Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 25(16): 11577-11585, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37039577

ABSTRACT

The power conversion efficiency (PCE) of polymer solar cells (PSCs) has recently reached >19% through the development of photoactive materials, particularly non-fullerene acceptors. Interfacial layers (ILs) have been another essential factor in optimizing device charge extraction. In this study, we propose a series of ILs, in which ionic iridium(III) (Ir(III)) complexes of different alkali metal cations (Li+, Na+, and K+) enhance the charge collection efficiency between zinc oxide and active layers through an induced internal electric field. The anionic coordinate sphere and counter-cations of the Ir(III) complexes are distributed according to the operating voltage of the PSCs, causing electric dipoles that enhance the internal electric field and charge collection efficiency. Ion species migration in the ILs is confirmed using electrochemical impedance spectroscopy. The PCE of the PM6:Y6-based PSCs was improved from 14.0% to 15.6% by introducing an IL (Ir-K+). Furthermore, the stability of PSCs containing ionic Ir(III) complexes is enhanced significantly under ultraviolet (UV) light and AM 1.5 G one-sun irradiation owing to the intense UV absorption capacity and photo durability of the ILs. A device containing the Ir(III) complex-based ILs retained ∼60% of its initial PCE after UV irradiation, whereas the control device retained only ∼20%.

2.
ACS Appl Mater Interfaces ; 13(51): 61598-61609, 2021 Dec 29.
Article in English | MEDLINE | ID: mdl-34928128

ABSTRACT

Conjugated microporous polymers (CMPs) are promising energy storage materials owing to their rigid and cross-linked microporous structures. However, the fabrication of nano- and microstructured CMP films for practical applications is currently limited by processing challenges. Herein, we report that combined sono-cavitation and nebulization synthesis (SNS) is an effective method for the synthesis of CMP films from a monomer precursor solution. Using the SNS, the scalable fabrication of microporous and redox-active CMP films can be achieved via the oxidative C-C coupling polymerization of the monomer precursor. Intriguingly, the ultrasonic frequency used during SNS strongly affects the synthesis of the CMP films, resulting in an approximately 30% improvement in reaction yields and ca. 1.3-1.7-times enhanced surface areas (336-542 m2/g) at a high ultrasonic frequency of 180 kHz compared to those at 120 kHz. Furthermore, we prepare highly conductive, three-dimensional porous electrodes [CMP/carbon nanotube (CNT)] by a layer-by-layer sequential deposition of CMP films and CNTs via SNS. Finally, an asymmetric supercapacitor comprising the CMP/CNT cathode and carbon anode shows a high specific capacitance of 477 F/g at 1 A/g with a wide working potential window (0-1.4 V) and robust cycling stability, exhibiting 94.4% retention after 10,000 cycles.

3.
Nano Lett ; 21(21): 9052-9060, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34724612

ABSTRACT

We investigate transient nanotextured heterogeneity in vanadium dioxide (VO2) thin films during a light-induced insulator-to-metal transition (IMT). Time-resolved scanning near-field optical microscopy (Tr-SNOM) is used to study VO2 across a wide parameter space of infrared frequencies, picosecond time scales, and elevated steady-state temperatures with nanoscale spatial resolution. Room temperature, steady-state, phonon enhanced nano-optical contrast reveals preexisting "hidden" disorder. The observed contrast is associated with inequivalent twin domain structures. Upon thermal or optical initiation of the IMT, coexisting metallic and insulating regions are observed. Correlations between the transient and steady-state nano-optical textures reveal that heterogeneous nucleation is partially anchored to twin domain interfaces and grain boundaries. Ultrafast nanoscopic dynamics enable quantification of the growth rate and bound the nucleation rate. Finally, we deterministically anchor photoinduced nucleation to predefined nanoscopic regions by locally enhancing the electric field of pump radiation using nanoantennas and monitor the on-demand emergent metallicity in space and time.

4.
Sci Rep ; 11(1): 10329, 2021 May 14.
Article in English | MEDLINE | ID: mdl-33990629

ABSTRACT

Room-temperature-superconducting Tc measured by high pressure in hydrides can be theoretically explained by a Brinkman-Rice (BR)-Bardeen-Cooper-Schrieffer (BCS) Tc combining both the generalized BCS Tc and the diverging effective mass, m*/m = 1/(1 - (U/Uc)2), with the on-site Coulomb interaction U in the BR picture. A transition from U in a correlated metal of the normal state to Uc in the superconducting state can lead to superconductivity, which can be caused by volume contraction induced by high pressure or low temperature.

5.
ACS Appl Mater Interfaces ; 12(16): 18813-18822, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32233452

ABSTRACT

The development of a flexible electronic skin (e-skin) highly sensitive to multimodal vibrations and a specialized sensing ability is of great interest for a plethora of applications, such as tactile sensors for robots, seismology, healthcare, and wearable electronics. Here, we present an e-skin design characterized by a bioinspired, microhexagonal structure coated with single-walled carbon nanotubes (SWCNTs) using an ultrasonic spray method. We have demonstrated the outstanding performances of the device in terms of the capability to detect both static and dynamic mechanical stimuli including pressure, shear displacement, and bending using the principles of piezoresistivity. Because of the hexagonal microcolumnar array, whose contact area changes according to the mechanical stimuli applied, the interlock-optimized geometry shows an enhanced sensitivity. This produces an improved ability to discriminate the different mechanical stimuli that might be applied. Moreover, we show that our e-skins can detect, discriminate, and monitor various intensities of different external and internal vibrations, which is a useful asset for various applications, such as seismology, smart phones, wearable human skins (voice monitoring), etc.


Subject(s)
Nanotubes, Carbon/chemistry , Ultrasonics/methods , Wearable Electronic Devices , Electronics , Equipment Design , Humans , Mechanical Phenomena , Smartphone , Voice/physiology
6.
Sci Rep ; 8(1): 16974, 2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30451908

ABSTRACT

Molecularly engineered Ir(III) complexes can transfer energy from short-wavelength photons (λ < 450 nm) to photons of longer wavelength (λ > 500 nm), which can enhance the otherwise low internal quantum efficiency (IQE) of crystalline Si (c-Si) nanowire solar cells (NWSCs) in the short-wavelength region. Herein, we demonstrate a phosphorescent energy downshifting system using Ir(III) complexes at short wavelengths (300-450 nm) to diminish the severe surface recombination that occurs in c-Si NWSCs. The developed Ir(III) complexes can be considered promising energy converters because they exhibit superior intrinsic properties such as a high quantum yield, a large Stokes shift, a long exciton diffusion length in crystalline film, and a reproducible synthetic procedure. Using the developed Ir(III) complexes, highly crystalline energy downshifting layers were fabricated by ultrasonic spray deposition to enhance the photoluminescence efficiency by increasing the radiative decay. With the optimized energy downshifting layer, our 1 cm2 c-Si NWSCs with Ir(III) complexes exhibited a higher IQE value for short-wavelength light (300-450 nm) compared with that of bare Si NWSCs without Ir(III) complexes, resulting in a notable increase in the short-circuit current density (from 34.4 mA·cm-2 to 36.5 mA·cm-2).

7.
Sci Rep ; 7(1): 16038, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29167488

ABSTRACT

The characteristic of strongly correlated materials is the Mott transition between metal and insulator (MIT or IMT) in the same crystalline structure, indicating the presence of a gap formed by the Coulomb interaction between carriers. The physics of the transition needs to be revealed. Using VO2, as a model material, we observe the emergence of a metallic chain in the intermediate insulating monoclinic structure (M2 phase) of epitaxial strained films, proving the Mott transition involving the breakdown of the critical Coulomb interaction. It is revealed by measuring the temperature dynamics of coherent optical phonons with separated vibrational modes originated from two substructures in M2: one is the charge-density-wave, formed by electron-phonon (e-ph) interaction, and the other is the equally spaced insulator-chain with electron-electron (e-e) correlations.

8.
Adv Mater ; 29(47)2017 Dec.
Article in English | MEDLINE | ID: mdl-29119629

ABSTRACT

The direct formation of CN and CO bonds from inert gases is essential for chemical/biological processes and energy storage systems. However, its application to carbon nanomaterials for improved energy storage remains technologically challenging. A simple and very fast method to form CN and CO bonds in reduced graphene oxide (RGO) and carbon nanotubes (CNTs) by an ultrasonic chemical reaction is described. Electrodes of nitrogen- or oxygen-doped RGO (N-RGO or O-RGO, respectively) are fabricated via the fixation between N2 or O2 carrier gas molecules and ultrasonically activated RGO. The materials exhibit much higher capacitance after doping (133, 284, and 74 F g-1 for O-RGO, N-RGO, and RGO, respectively). Furthermore, the doped 2D RGO and 1D CNT materials are prepared by layer-by-layer deposition using ultrasonic spray to form 3D porous electrodes. These electrodes demonstrate very high specific capacitances (62.8 mF cm-2 and 621 F g-1 at 10 mV s-1 for N-RGO/N-CNT at 1:1, v/v), high cycling stability, and structural flexibility.

9.
Chemistry ; 23(7): 1645-1653, 2017 Jan 31.
Article in English | MEDLINE | ID: mdl-27862428

ABSTRACT

Aggregates of amyloidogenic peptides are involved in the pathogenesis of several degenerative disorders. Herein, an iridium(III) complex, Ir-1, is reported as a chemical tool for oxidizing amyloidogenic peptides upon photoactivation and subsequently modulating their aggregation pathways. Ir-1 was rationally designed based on multiple characteristics, including 1) photoproperties leading to excitation by low-energy radiation; 2) generation of reactive oxygen species responsible for peptide oxidation upon photoactivation under mild conditions; and 3) relatively easy incorporation of a ligand on the IrIII center for specific interactions with amyloidogenic peptides. Biochemical and biophysical investigations illuminate that the oxidation of representative amyloidogenic peptides (i.e., amyloid-ß, α-synuclein, and human islet amyloid polypeptide) is promoted by light-activated Ir-1, which alters the conformations and aggregation pathways of the peptides. Additionally, their potential oxidation sites are identified as methionine, histidine, or tyrosine residues. Overall, our studies on Ir-1 demonstrate the feasibility of devising metal complexes as chemical tools suitable for elucidating the nature of amyloidogenic peptides at the molecular level, as well as controlling their aggregation.


Subject(s)
Amyloid beta-Peptides/chemistry , Coordination Complexes/chemistry , Iridium/chemistry , Amino Acid Sequence , Amyloid beta-Peptides/metabolism , Humans , Islet Amyloid Polypeptide/chemistry , Islet Amyloid Polypeptide/metabolism , Light , Oxidation-Reduction , Protein Aggregates/radiation effects , Spectrometry, Mass, Electrospray Ionization , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism
10.
J Am Chem Soc ; 138(34): 10968-77, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27494510

ABSTRACT

Protein inactivation by reactive oxygen species (ROS) such as singlet oxygen ((1)O2) and superoxide radical (O2(•-)) is considered to trigger cell death pathways associated with protein dysfunction; however, the detailed mechanisms and direct involvement in photodynamic therapy (PDT) have not been revealed. Herein, we report Ir(III) complexes designed for ROS generation through a rational strategy to investigate protein modifications by ROS. The Ir(III) complexes are effective as PDT agents at low concentrations with low-energy irradiation (≤ 1 J cm(-2)) because of the relatively high (1)O2 quantum yield (> 0.78), even with two-photon activation. Furthermore, two types of protein modifications (protein oxidation and photo-cross-linking) involved in PDT were characterized by mass spectrometry. These modifications were generated primarily in the endoplasmic reticulum and mitochondria, producing a significant effect for cancer cell death. Consequently, we present a plausible biologically applicable PDT modality that utilizes rationally designed photoactivatable Ir(III) complexes.


Subject(s)
Endoplasmic Reticulum/metabolism , Iridium/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/metabolism , Photosensitizing Agents/chemistry , Photosensitizing Agents/metabolism , Toll-Like Receptor 3/metabolism , Biological Transport , HEK293 Cells , HeLa Cells , Humans , Singlet Oxygen/metabolism
11.
J Phys Condens Matter ; 28(8): 085602, 2016 Mar 02.
Article in English | MEDLINE | ID: mdl-26829104

ABSTRACT

In order to elucidate a mechanism of the insulator-to-metal transition (IMT) for a Mott insulator VO2 (3d(1)), we present Schottky nanojunctions and the structural phase transition (SPT) by simultaneous nanolevel measurements of photocurrent and Raman scattering in microlevel devices. The Schottky nanojunction with the monoclinic metallic phase between the monoclinic insulating phases is formed by the photoheat-induced IMT not accompanied with the SPT. The temperature dependence of the Schottky junction reveals that the Mott insulator has an electronic structure of an indirect subband between the main Hubbard d bands. The IMT as reverse process of the Mott transition occurs by temperature-induced excitation of bound charges in the indirect semiconductor band, most likely formed by impurities such as oxygen deficiency. The metal band (3d(1)) for the Mott insulator is screened (trapped) by the indirect band (impurities).

12.
Nano Lett ; 15(10): 6318-23, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26352780

ABSTRACT

We report that vanadium dioxide films patterned with λ/100000 nanogaps exhibit an anomalous transition behavior at millimeter wavelengths. Most of the hybrid structure's switching actions occur well below the insulator to metal transition temperature, starting from 25 °C, so that the hysteresis curves completely separate themselves from their bare film counterparts. It is found that thermally excited intrinsic carriers are responsible for this behavior by introducing enough loss in the context of the radically modified electromagnetic environment in the vicinity of the nanogaps. This phenomenon newly extends the versatility of insulator to metal transition devices to encompass their semiconductor properties.

13.
Nano Lett ; 15(9): 5893-8, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26301339

ABSTRACT

We demonstrate that high-field terahertz (THz) pulses trigger transient insulator-to-metal transition in a nanoantenna patterned vanadium dioxide thin film. THz transmission of vanadium dioxide instantaneously decreases in the presence of strong THz fields. The transient THz absorption indicates that strong THz fields induce electronic insulator-to-metal transition without causing a structural transformation. The transient phase transition is activated on the subcycle time scale during which the THz pulse drives the electron distribution of vanadium dioxide far from equilibrium and disturb the electron correlation. The strong THz fields lower the activation energy in the insulating phase. The THz-triggered insulator-to-metal transition gives rise to hysteresis loop narrowing, while lowering the transition temperature both for heating and cooling sequences. THz nanoantennas enhance the field-induced phase transition by intensifying the field strength and improve the detection sensitivity via antenna resonance. The experimental results demonstrate a potential that plasmonic nanostructures incorporating vanadium dioxide can be the basis for ultrafast, energy-efficient electronic and photonic devices.

14.
Opt Express ; 23(11): 14234-44, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26072790

ABSTRACT

By utilizing a CO2 laser centered at ~10.6 µm as an optical stimulus, we demonstrated bidirectional laser triggering in a two-terminal planar device based on a highly resistive vanadium dioxide (VO2) thin film. The break-over voltage of the VO2-based device was measured as large as ~294.8 V, which resulted from the high resistivity of insulating VO2 grains comprising the thin film and the large electrode separation of the device. The bidirectional current switching of up to 20 mA was achieved by harnessing the dramatic resistance variation of the device photo-thermally induced by the laser illumination. The transient responses of laser-triggered currents were also analyzed when laser pulses excited the device at a variety of pulse widths and repetition rates. In the transient responses, a maximum switching contrast between off- and on-state currents was measured as ~7067 with an off-state current of ~2.83 µA, and rising and falling times were measured as ~30 and ~16 ms, respectively, for 100 ms laser pulses.


Subject(s)
Electricity , Lasers, Gas , Optics and Photonics/instrumentation , Oxides/chemistry , Vanadium Compounds/chemistry
15.
ACS Appl Mater Interfaces ; 6(22): 19718-25, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25343172

ABSTRACT

In order to investigate the metal-insulator transition characteristics of VO2 devices annealed in reducing atmosphere after device fabrication at various temperature, electrical, chemical, and thermal characteristics are measured and analyzed. It is found that the sheet resistance and the insulator-metal transition point, induced by both voltage and thermal, decrease when the devices are annealed from 200 to 500 °C. The V 2p3/2 peak variation in X-ray photoelectron spectroscopy (XPS) characterization verifies the reduction of thin-films. A decrease of the transition temperature from voltage hysteresis measurements further endorse the reducing effects of the annealing on VO2 thin-film.

16.
Opt Express ; 19(22): 21211-5, 2011 Oct 24.
Article in English | MEDLINE | ID: mdl-22108973

ABSTRACT

We demonstrate an active metamaterial device that allows to electrically control terahertz transmission over more than one order of magnitude. Our device consists of a lithographically defined gold nano antenna array fabricated on a thin film of vanadium dioxide (VO(2)), a material that possesses an insulator to metal transition. The nano antennas let terahertz (THz) radiation funnel through when the VO(2) film is in the insulating state. By applying a dc-bias voltage through our device, the VO(2) becomes metallic. This electrically shorts the antennas and therefore switches off the transmission in two distinct regimes: reversible and irreversible switching.

17.
Phys Rev Lett ; 107(6): 066403, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21902347

ABSTRACT

Using time-resolved far-infrared spectroscopy, we observe multiple routes for photoinduced phase transitions in V(2)O(3). This includes (i) a photothermal antiferromagnetic to paramagnetic transition and (ii) an incipient strain-generated paramagnetic metal to paramagnetic insulator transition, which manifests as coherent oscillations in the far-infrared conductivity. The ∼100 ps conductivity oscillation results from coherent acoustic phonon modulation of the bandwidth W. Our results indicate that poor metals are particularly amenable to coherent strain control of their electronic properties.

18.
Opt Express ; 18(16): 16452-9, 2010 Aug 02.
Article in English | MEDLINE | ID: mdl-20721032

ABSTRACT

We report on an order of magnitude enhanced nonlinear response of vanadium dioxide thin film patterned with nanoresonators--nano slot antennas fabricated on the gold film. Transmission of terahertz radiation, little affected by an optical pumping for the case of bulk thin film, can now be completely switched-off: DeltaT/T approximately -0.9999 by the same optical pumping power. This unprecedentedly large optical pump-terahertz probe nonlinearity originates from the insulator-to-metal phase transition drastically reducing the antenna cross sections of the nanoresonators. Our scheme enables nanoscale-thin film technology to be used for all-optical switching of long wavelength light.


Subject(s)
Nanostructures/chemistry , Scattering, Radiation , Terahertz Radiation , Vanadium Compounds/chemistry , Computer-Aided Design , Equipment Design , Refractometry/instrumentation
19.
Nano Lett ; 10(6): 2064-8, 2010 Jun 09.
Article in English | MEDLINE | ID: mdl-20469898

ABSTRACT

Unusual performances of metamaterials such as negative index of refraction, memory effect, and cloaking originate from the resonance features of the metallic composite atom(1-6). Indeed, control of metamaterial properties by changing dielectric environments of thin films below the metallic resonators has been demonstrated(7-11). However, the dynamic control ranges are still limited to less than a factor of 10,(7-11) with the applicable bandwidth defined by the sharp resonance features. Here, we present ultra-broad-band metamaterial thin film with colossal dynamic control range, fulfilling present day research demands. Hybridized with thin VO(2) (vanadium dioxide) (12-18) films, nanoresonator supercell arrays designed for one decade of spectral width in terahertz frequency region show an unprecedented extinction ratio of over 10000 when the underlying thin film experiences a phase transition. Our nanoresonator approach realizes the full potential of the thin film technology for long wavelength applications.

20.
Opt Express ; 17(22): 19605-10, 2009 Oct 26.
Article in English | MEDLINE | ID: mdl-19997180

ABSTRACT

By incorporating saturation-induced gain modulation of an erbium-doped fiber amplifier (EDFA), we have demonstrated a high-speed photo-assisted electrical gating with considerably enhanced switching characteristics in a two-terminal device fabricated by using vanadium dioxide thin film. The gating operation was performed by illuminating the output light of the EDFA, whose transient gain was modulated by adjusting the chopping frequency of the input light down to 1 kHz, onto the device. In the proposed gating scheme, gated signals with a temporal duration of approximately 40 micros were successively generated at a repetition rate of 1 kHz.


Subject(s)
Amplifiers, Electronic , Fiber Optic Technology/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Vanadium Compounds/chemistry , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...