Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 23(18): 5648-5656, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28536309

ABSTRACT

Purpose: Tumor-derived cell-free DNA (cfDNA) in plasma can be used for molecular testing and provide an attractive alternative to tumor tissue. Commonly used PCR-based technologies can test for limited number of alterations at the time. Therefore, novel ultrasensitive technologies capable of testing for a broad spectrum of molecular alterations are needed to further personalized cancer therapy.Experimental Design: We developed a highly sensitive ultradeep next-generation sequencing (NGS) assay using reagents from TruSeqNano library preparation and NexteraRapid Capture target enrichment kits to generate plasma cfDNA sequencing libraries for mutational analysis in 61 cancer-related genes using common bioinformatics tools. The results were retrospectively compared with molecular testing of archival primary or metastatic tumor tissue obtained at different points of clinical care.Results: In a study of 55 patients with advanced cancer, the ultradeep NGS assay detected 82% (complete detection) to 87% (complete and partial detection) of the aberrations identified in discordantly collected corresponding archival tumor tissue. Patients with a low variant allele frequency (VAF) of mutant cfDNA survived longer than those with a high VAF did (P = 0.018). In patients undergoing systemic therapy, radiological response was positively associated with changes in cfDNA VAF (P = 0.02), and compared with unchanged/increased mutant cfDNA VAF, decreased cfDNA VAF was associated with longer time to treatment failure (TTF; P = 0.03).Conclusions: Ultradeep NGS assay has good sensitivity compared with conventional clinical mutation testing of archival specimens. A high VAF in mutant cfDNA corresponded with shorter survival. Changes in VAF of mutated cfDNA were associated with TTF. Clin Cancer Res; 23(18); 5648-56. ©2017 AACR.


Subject(s)
Biomarkers, Tumor , Circulating Tumor DNA , High-Throughput Nucleotide Sequencing , Neoplasms/diagnosis , Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Female , Genetic Testing , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/standards , Humans , Male , Middle Aged , Mutation , Neoplasms/mortality , Prognosis , Reproducibility of Results , Sensitivity and Specificity
2.
BMC Bioinformatics ; 12: 479, 2011 Dec 16.
Article in English | MEDLINE | ID: mdl-22177214

ABSTRACT

BACKGROUND: The nCounter analysis system (NanoString Technologies, Seattle, WA) is a technology that enables the digital quantification of multiplexed target RNA molecules using color-coded molecular barcodes and single-molecule imaging. This system gives discrete counts of RNA transcripts and is capable of providing a high level of precision and sensitivity at less than one transcript copy per cell. RESULTS: We have designed a web application compatible with any modern web browser that accepts the raw count data produced by the NanoString nCounter analysis system, normalizes it according to guidelines provided by NanoString Technologies, performs differential expression analysis on the normalized data, and provides a heatmap of the results from the differential expression analysis. CONCLUSION: NanoStriDE allows biologists to take raw data produced by a NanoString nCounter analysis system and easily interpret differential expression analysis of this data represented through a heatmap. NanoStriDE is freely accessible to use on the NanoStriDE website and is available to use under the GPL v2 license.


Subject(s)
Gene Expression Profiling/methods , Humans , Internet , Nanotechnology/methods , Oligonucleotide Array Sequence Analysis
3.
Nucleic Acids Res ; 39(18): e120, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21737426

ABSTRACT

RNA sequencing approaches to transcriptome analysis require a large amount of input total RNA to yield sufficient mRNA using either poly-A selection or depletion of rRNA. This feature makes it difficult to miniaturize transcriptome analysis for greater efficiency. To address this challenge, we devised and validated a simple procedure for the preparation of whole-transcriptome cDNA libraries from a minute amount (500 pg) of total RNA. We compared a single-sample library prepared by this Ovation RNA-Seq system with two available methods of mRNA enrichment (TruSeq poly-A enrichment and RiboMinus rRNA depletion). Using the Ovation preparation method for a set of eight mouse tissue samples, the RNA sequencing data obtained from two different next-generation sequencing platforms (SOLiD and Illumina Genome Analyzer IIx) yielded negligible rRNA reads (<3.5%) while retaining transcriptome sequencing fidelity. We further validated the Ovation amplification technique by examining the resulting library complexity, reproducibility, evenness of transcript coverage, 5' and 3' bias and platform-specific biases. Notably, in this side-by-side comparison, SOLiD sequencing chemistry is biased toward higher GC content of transcriptome and Illumina Genome analyzer IIx is biased away from neutral to lower GC content of the transcriptomics regions.


Subject(s)
Gene Expression Profiling/methods , Nucleic Acid Amplification Techniques , RNA, Messenger/analysis , Sequence Analysis, RNA , Animals , Male , Mice , Mice, Inbred BALB C , RNA, Messenger/chemistry , RNA, Ribosomal/analysis , Testis/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...