Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 18(9): 6524-6527, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29677826

ABSTRACT

A 3D sulfur cathode for a large-scale room-temperature (RT) Na/S battery with a high sulfur loading of 14.63 mg cm-2 was fabricated. The first discharge was tested in order to understand the macroscopic changes. A first discharge capacity of 865 mAh g-1 was obtained at 1/1000 C-rate along with a discharge curve with two clear plateaus at 2.29 V and 1.78 V, respectively. A visual change occurs in the 3D sulfur cathode. A thick layer of discharge products at the solid electrolyte separator face of the 3D sulfur cathode was observed and analyzed using a scanning electron microscope (SEM) coupled with energy dispersive X-ray spectroscopy (EDS).

2.
Nanoscale Res Lett ; 7: 64, 2012 Jan 05.
Article in English | MEDLINE | ID: mdl-22222001

ABSTRACT

LiNi0.4Co0.3Mn0.3O2 thin film electrodes are fabricated from LiNi0.4Co0.3Mn0.3O2 raw powder at room temperature without pretreatments using aerosol deposition that is much faster and easier than conventional methods such as vaporization, pulsed laser deposition, and sputtering. The LiNi0.4Co0.3Mn0.3O2 thin film is composed of fine grains maintaining the crystal structure of the LiNi0.4Co0.3Mn0.3O2 raw powder. In the cyclic voltammogram, the LiNi0.4Co0.3Mn0.3O2 thin film electrode shows a 3.9-V anodic peak and a 3.6-V cathodic peak. The initial discharge capacity is 44.6 µAh/cm2, and reversible behavior is observed in charge-discharge profiles. Based on the results, the aerosol deposition method is believed to be a potential candidate for the fabrication of thin film electrodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...