Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Cell Res ; 1870(8): 119556, 2023 12.
Article in English | MEDLINE | ID: mdl-37544381

ABSTRACT

Several diseases are associated with improper regulation of the Hippo pathway, which plays an important role in cell proliferation and cancer metastasis. Overactivation of the YAP and TAZ proteins accelerates cell proliferation, invasion, and migration during tumorigenesis. Tolfenamic acid (TA) is a non-steroidal anti-inflammatory drug (NSAID) that exhibits activity against various types of cancer. In this study, we observed that TA decreased YAP and TAZ protein levels in cancer cells. TA increased the phosphorylation of YAP and TAZ, leading to the degradation of YAP and TAZ in the cytoplasm and nucleus. TA predominantly affected multiple phosphodegron sites in the YAP and TAZ and lowered 14-3-3ß protein expression, causing YAP and TAZ to enter the ubiquitination pathway. Proteins that affect YAP and TAZ regulation, such as NAG-1 and several YAP/TAZ E3 ligases, were not involved in TA-mediated YAP/TAZ degradation. In summary, our results indicate that TA affects phosphodegron sites on YAP/TAZ, demonstrating a novel effect of TA in tumorigenesis.


Subject(s)
Adaptor Proteins, Signal Transducing , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , YAP-Signaling Proteins , Carcinogenesis , Cell Transformation, Neoplastic
2.
BMB Rep ; 56(9): 508-513, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37291053

ABSTRACT

The phytochemical quercetin has gained attention for its antiinflammatory and anti-tumorigenic properties in various types of cancer. Tumorigenesis involves the aberrant regulation of kinase/phosphatase, highlighting the importance of maintaining homeostasis. Dual Specificity Phosphatase (DUSP) plays a crucial role in controlling the phosphorylation of ERK. The current study aimed to clone the DUSP5 promoter, and investigate its transcriptional activity in the presence of quercetin. The results revealed that quercetin-induced DUSP5 expression is associated with the serum response factor (SRF) binding site located in the DUSP5 promoter. The deletion of this site abolished the luciferase activity induced by quercetin, indicating its vital role in quercetin-induced DUSP5 expression. SRF protein is a transcription factor that potentially contributes to quercetin-induced DUSP5 expression at the transcriptional level. Additionally, quercetin enhanced SRF binding activity without changing its expression. These findings provide evidence of how quercetin affects anti-cancer activity in colorectal tumorigenesis by inducing SRF transcription factor activity, thereby increasing DUSP5 expression at the transcriptional level. This study highlights the importance of investigating the molecular mechanisms underlying the anti-cancer properties of quercetin, and suggests its potential use in cancer therapy. [BMB Reports 2023; 56(9): 508-513].


Subject(s)
Quercetin , Serum Response Factor , Humans , Quercetin/pharmacology , Serum Response Factor/genetics , Serum Response Factor/metabolism , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Phosphorylation , Carcinogenesis , Dual Specificity Phosphatase 6/metabolism
3.
Oncogene ; 42(22): 1832-1842, 2023 06.
Article in English | MEDLINE | ID: mdl-37055552

ABSTRACT

Thrombospondin 1 (TSP1) is known for its cell-specific functions in cancer progression, such as proliferation and migration. It contains 22 exons that may potentially produce several different transcripts. Here, we identified TSP1V as a novel TSP1-splicing variant produced by intron retention (IR) in human thyroid cancer cells and tissues. We observed that TSP1V functionally inhibited tumorigenesis contrary to TSP1 wild-type, as identified in vivo and in vitro. These activities of TSP1V are caused by inhibiting phospho-Smad and phospho-focal adhesion kinase. Reverse transcription polymerase chain reaction and minigene experiments revealed that some phytochemicals/non-steroidal anti-inflammatory drugs enhanced IR. We further found that RNA-binding motif protein 5 (RBM5) suppressed IR induced by sulindac sulfide treatment. Additionally, sulindac sulfide reduced phospho-RBM5 levels in a time-dependent manner. Furthermore, trans-chalcone demethylated TSP1V, thereby preventing methyl-CpG-binding protein 2 binding to TSP1V gene. In addition, TSP1V levels were significantly lower in patients with differentiated thyroid carcinoma than in those with benign thyroid nodule, indicating its potential application as a diagnostic biomarker in tumor progression.


Subject(s)
Thrombospondin 1 , Thyroid Gland , Humans , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cell Cycle Proteins/metabolism , Cell Transformation, Neoplastic/genetics , DNA-Binding Proteins/metabolism , RNA-Binding Proteins , Thrombospondin 1/genetics , Thrombospondin 1/metabolism , Tumor Suppressor Proteins/metabolism
4.
Adv Sci (Weinh) ; 10(15): e2301006, 2023 May.
Article in English | MEDLINE | ID: mdl-36943003

ABSTRACT

Salt anions with a high donor number (DN) enable high sulfur utilization in lithium-sulfur (Li-S) batteries by inducing three-dimensional (3D) Li2 S growth. However, their insufficient compatibility with Li metal electrodes limits their cycling stability. Herein, a new class of salt anion, thiocyanate (SCN- ), is presented, which features a Janus character of electron donor and acceptor. Due to a strong Li+ coordination by SCN- and the direct interaction of SCN- with polysulfide anions, the LiSCN electrolyte has a remarkably high lithium polysulfide solubility. This electrolyte induces 3D Li2 S formation and ameliorates cathode passivation, even more than Br- , a typical high DN anion. Moreover, SCN- forms a Li3 N-enriched stable SEI layer at the surface of the Li metal electrode, enhancing cycling stability. A Li-S battery with the LiSCN electrolyte shows high current density operation (2.54 mA cm⁻2 ) with high discharge capacity (1133 mAh g⁻1 ) and prolonged cycle life (100 cycles). This work demonstrates that the cathode and anode performance in a Li-S battery can be simply and concurrently enhanced by the single salt anion.

5.
Sci Rep ; 11(1): 15027, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34294853

ABSTRACT

Nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1) plays a role in various diseases. Here, the anti-diabetic effects of NAG-1 were evaluated using a high-fat diet/streptozotocin-induced diabetic mouse model. NAG-1-overexpressing transgenic (NAG-1 Tg) mice exhibited lower body weight, fasting blood glucose levels, and serum insulin levels than wild-type (WT) mice. The homeostatic model assessment of insulin resistance scores of NAG-1 Tg mice were lower than those of WT mice. Hematoxylin and eosin staining revealed a smaller lipid droplet size in the adipose tissues, lower lipid accumulation in the hepatocytes, and larger beta cell area in the pancreas of NAG-1 Tg mice than in those of WT mice. Immunohistochemical analysis revealed downregulated expression of cleaved caspase-3, an apoptosis marker, in the beta cells of NAG-1 Tg mice. Adiponectin and leptin mRNA levels were upregulated and downregulated in NAG-1 Tg mice, respectively. Additionally, the expression of IRS1/PI3K/AKT signaling pathway components, especially Foxo1, which regulates gluconeogenesis in the muscle and white adipose tissue, was downregulated in NAG-1 Tg mice. Furthermore, NAG-1 overexpression promoted the expression of As160 in both muscles and adipocytes, and the mRNA levels of the NLRP3 pathway members were downregulated in NAG-1 Tg mice. Our findings suggest that NAG-1 expression alleviates diabetes in mice.


Subject(s)
Diabetes Mellitus, Experimental/etiology , Diabetes Mellitus, Experimental/metabolism , Disease Susceptibility , Growth Differentiation Factor 15/genetics , Animals , Biomarkers , Diet, High-Fat , Disease Models, Animal , Dyslipidemias/etiology , Dyslipidemias/metabolism , Gene Expression , Genetic Predisposition to Disease , Growth Differentiation Factor 15/metabolism , Insulin Resistance , Liver/metabolism , Liver/pathology , Mice , Mice, Transgenic , Models, Biological , Pancreas/metabolism , Pancreas/pathology , Signal Transduction , Streptozocin/adverse effects
6.
Nano Lett ; 21(13): 5500-5507, 2021 07 14.
Article in English | MEDLINE | ID: mdl-33913722

ABSTRACT

Sharks, marine creatures that swim fast and have an antifouling ability, possess dermal denticle structures of micrometer-size. Because the riblet geometries on the denticles reduce the shear stress by inducing the slip of fluid parallel to the stream-wise direction, shark skin has the distinguished features of low drag and antifouling. Although much attention has been given to low-drag surfaces inspired from shark skin, it remains an important challenge to accurately mimic denticle structures in the micrometer scale and to finely control their structural features. This paper presents a novel method to create shark skin-mimetic denticle structures for low drag by exploiting a photoreconfigurable azopolymer. The light-designed denticle structure exhibits superior hydrophobicity and an antifouling effect as sharks do. This work suggests that our novel photoreconfiguration technology, mimicking shark skin and systematically manipulating various structural parameters, can be used in a reliable manner for diverse applications requiring low-drag surfaces.


Subject(s)
Sharks , Animals , Biomimetics , Hydrophobic and Hydrophilic Interactions , Skin
7.
Biochem Biophys Res Commun ; 519(1): 29-34, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31474335

ABSTRACT

Non-steroidal anti-inflammatory drug activated gene-1 (NAG-1), also known as growth differentiation factor 15 (GDF15), is a TGF-ß (transforming growth factor beta) superfamily protein with a distinctive secretion pathway. NAG-1 is associated with multiple diseases including cancer, wherein it plays a role in both pro- and anti-cancer activities. We previously reported that NAG-1 is translocated to different subcellular compartments and its activity depends on its localization. In this paper, we report that the transfection of a novel peptide corresponding to the nuclear localization signal (NLS) of NAG-1 blocks its translocation to the nucleus. Further, accumulation of NAG-1 in the cytoplasm decreased mitochondrial membrane potential, thus implying apoptosis induction as a consequence. Overall, our results indicate that the novel peptide derived from NAG-1 NLS sequence is a promising tool for enhancing the anti-tumorigenic activity of NAG-1.


Subject(s)
Antineoplastic Agents/pharmacology , Growth Differentiation Factor 15/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Growth Differentiation Factor 15/genetics , HCT116 Cells , HEK293 Cells , Humans , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...