Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 21(17)2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32854424

ABSTRACT

Selective autolysosomal degradation of damaged mitochondria, also called mitophagy, is an indispensable process for maintaining integrity and homeostasis of mitochondria. One well-established mechanism mediating selective removal of mitochondria under relatively mild mitochondria-depolarizing stress is PINK1-Parkin-mediated or ubiquitin-dependent mitophagy. However, additional mechanisms such as LC3-mediated or ubiquitin-independent mitophagy induction by heavy environmental stress exist and remain poorly understood. The present study unravels a novel role of stress-inducible protein Sestrin2 in degradation of mitochondria damaged by transition metal stress. By utilizing proteomic methods and studies in cell culture and rodent models, we identify autophagy kinase ULK1-mediated phosphorylation sites of Sestrin2 and demonstrate Sestrin2 association with mitochondria adaptor proteins in HEK293 cells. We show that Ser-73 and Ser-254 residues of Sestrin2 are phosphorylated by ULK1, and a pool of Sestrin2 is strongly associated with mitochondrial ATP5A in response to Cu-induced oxidative stress. Subsequently, this interaction promotes association with LC3-coated autolysosomes to induce degradation of mitochondria damaged by Cu-induced ROS. Treatment of cells with antioxidants or a Cu chelator significantly reduces Sestrin2 association with mitochondria. These results highlight the ULK1-Sestrin2 pathway as a novel stress-sensing mechanism that can rapidly induce autophagic degradation of mitochondria under severe heavy metal stress.


Subject(s)
Autophagy-Related Protein-1 Homolog/metabolism , Copper/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Mitochondria/physiology , Nuclear Proteins/metabolism , Proteomics/methods , Autophagy , Binding Sites , HEK293 Cells , Humans , Microtubule-Associated Proteins/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Mitophagy , Nuclear Proteins/chemistry , Oxidative Stress , Phosphorylation , Signal Transduction/drug effects
2.
Sci Rep ; 9(1): 14464, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31594991

ABSTRACT

Arsenite, a trivalent form of arsenic, is an element that occurs naturally in the environment. Humans are exposed to high dose of arsenite through consuming arsenite-contaminated drinking water and food, and the arsenite can accumulate in the human tissues. Arsenite induces oxidative stress, which is linked to metabolic disorders such as obesity and diabetes. Brown adipocytes dissipating energy as heat have emerging roles for obesity treatment and prevention. Therefore, understanding the pathophysiological role of brown adipocytes can provide effective strategies delineating the link between arsenite exposure and metabolic disorders. Our study revealed that arsenite significantly reduced differentiation of murine brown adipocytes and mitochondrial biogenesis and respiration, leading to attenuated thermogenesis via decreasing UCP1 expression. Oral administration of arsenite in mice resulted in heavy accumulation in brown adipose tissue and suppression of lipogenesis, mitochondrial biogenesis and thermogenesis. Mechanistically, arsenite exposure significantly inhibited autophagy necessary for homeostasis of brown adipose tissue through suppression of Sestrin2 and ULK1. These results clearly confirm the emerging mechanisms underlying the implications of arsenite exposure in metabolic disorders.


Subject(s)
Adipogenesis/drug effects , Adipose Tissue, Brown/drug effects , Arsenites/toxicity , Autophagy , Mitochondria/drug effects , Organelle Biogenesis , Thermogenesis/drug effects , Adipocytes/drug effects , Administration, Oral , Animals , Arsenites/administration & dosage , Autophagy-Related Protein-1 Homolog/metabolism , Cell Line , Male , Mice, Inbred C57BL , Mitochondria/physiology , Peroxidases/metabolism
3.
Front Physiol ; 10: 22, 2019.
Article in English | MEDLINE | ID: mdl-30745879

ABSTRACT

Autophagy, lipophagy, and mitophagy are considered to be the major recycling processes for protein aggregates, excess fat, and damaged mitochondria in adipose tissues in response to nutrient status-associated stress, oxidative stress, and genotoxic stress in the human body. Obesity with increased body weight is often associated with white adipose tissue (WAT) hypertrophy and hyperplasia and/or beige/brown adipose tissue atrophy and aplasia, which significantly contribute to the imbalance in lipid metabolism, adipocytokine secretion, free fatty acid release, and mitochondria function. In recent studies, hyperactive autophagy in WAT was observed in obese and diabetic patients, and inhibition of adipose autophagy through targeted deletion of autophagy genes in mice improved anti-obesity phenotypes. In addition, active mitochondria clearance through activation of autophagy was required for beige/brown fat whitening - that is, conversion to white fat. However, inhibition of autophagy seemed detrimental in hypermetabolic conditions such as hepatic steatosis, atherosclerosis, thermal injury, sepsis, and cachexia through an increase in free fatty acid and glycerol release from WAT. The emerging concept of white fat browning-conversion to beige/brown fat-has been controversial in its anti-obesity effect through facilitation of weight loss and improving metabolic health. Thus, proper regulation of autophagy activity fit to an individual metabolic profile is necessary to ensure balance in adipose tissue metabolism and function, and to further prevent metabolic disorders such as obesity and diabetes. In this review, we summarize the effect of autophagy in adipose tissue browning in the context of obesity prevention and its potential as a promising target for the development of anti-obesity drugs.

SELECTION OF CITATIONS
SEARCH DETAIL
...