Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 48(19): 10615-10631, 2020 11 04.
Article in English | MEDLINE | ID: mdl-32776089

ABSTRACT

Lowering of prion protein (PrP) expression in the brain is a genetically validated therapeutic hypothesis in prion disease. We recently showed that antisense oligonucleotide (ASO)-mediated PrP suppression extends survival and delays disease onset in intracerebrally prion-infected mice in both prophylactic and delayed dosing paradigms. Here, we examine the efficacy of this therapeutic approach across diverse paradigms, varying the dose and dosing regimen, prion strain, treatment timepoint, and examining symptomatic, survival, and biomarker readouts. We recapitulate our previous findings with additional PrP-targeting ASOs, and demonstrate therapeutic benefit against four additional prion strains. We demonstrate that <25% PrP suppression is sufficient to extend survival and delay symptoms in a prophylactic paradigm. Rise in both neuroinflammation and neuronal injury markers can be reversed by a single dose of PrP-lowering ASO administered after the detection of pathological change. Chronic ASO-mediated suppression of PrP beginning at any time up to early signs of neuropathology confers benefit similar to constitutive heterozygous PrP knockout. Remarkably, even after emergence of frank symptoms including weight loss, a single treatment prolongs survival by months in a subset of animals. These results support ASO-mediated PrP lowering, and PrP-lowering therapeutics in general, as a promising path forward against prion disease.


Subject(s)
Oligonucleotides, Antisense/therapeutic use , Prion Diseases/therapy , Prion Proteins/genetics , RNAi Therapeutics/methods , Animals , Brain/metabolism , Brain/pathology , Cell Line , Mice , Mice, Inbred C57BL , Oligonucleotides, Antisense/chemistry , Prion Proteins/metabolism
2.
J Biomed Opt ; 24(3): 1-6, 2019 03.
Article in English | MEDLINE | ID: mdl-30873763

ABSTRACT

We report a fiber-optic plasmonic probe with nanogap-rich gold nanoislands for on-site surface-enhanced Raman spectroscopy (SERS). The plasmonic probe features nanogap-rich Au nanoislands on the top surface of a single multimode fiber. Au nanoislands were monolithically fabricated using repeated solid-state dewetting of thermally evaporated Au thin film. The plasmonic probe shows 7.8 × 106 in SERS enhancement factor and 100 nM in limit-of-detection for crystal violet under both the excitation of laser light and the collection of SERS signals through the optical fiber. The fiber-through measurement also demonstrates the label-free SERS detection of folic acid at micromolar level. The plasmonic probe can provide a tool for on-site and in vivo SERS applications.


Subject(s)
Fiber Optic Technology/instrumentation , Gold/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Spectrum Analysis, Raman/instrumentation , Equipment Design , Folic Acid/analysis , Limit of Detection , Nanotechnology/instrumentation , Signal Processing, Computer-Assisted , Spectrum Analysis, Raman/methods
3.
Sci Rep ; 9(1): 3560, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30837501

ABSTRACT

An endomicroscope opens new frontiers of non-invasive biopsy for in vivo imaging applications. Here we report two-photon laser scanning endomicroscope for in vivo cellular and tissue imaging using a Lissajous fiber scanner. The fiber scanner consists of a piezoelectric (PZT) tube, a single double-clad fiber (DCF) with high fluorescence collection, and a micro-tethered-silicon-oscillator (MTSO) for the separation of biaxial resonant scanning frequencies. The endomicroscopic imaging exhibits 5 frames/s with 99% in scanning density by using the selection rule of scanning frequencies. The endomicroscopic scanner was compactly packaged within a stainless tube of 2.6 mm in diameter with a high NA gradient-index (GRIN) lens, which can be easily inserted into the working channel of a conventional laparoscope. The lateral and axial resolutions of the endomicroscope are 0.70 µm and 7.6 µm, respectively. Two-photon fluorescence images of a stained kidney section and miscellaneous ex vivo and in vivo organs from wild type and green fluorescent protein transgenic (GFP-TG) mice were successfully obtained by using the endomicroscope. The endomicroscope also obtained label free images including autofluorescence and second-harmonic generation of an ear tissue of Thy1-GCaMP6 (GP5.17) mouse. The Lissajous scanning two-photon endomicroscope can provide a compact handheld platform for in vivo tissue imaging or optical biopsy applications.


Subject(s)
Endoscopy/instrumentation , Microscopy/instrumentation , Photons , Animals , Kidney/diagnostic imaging , Mechanical Phenomena , Mice , Optical Phenomena
4.
Opt Express ; 25(14): 16854-16859, 2017 Jul 10.
Article in English | MEDLINE | ID: mdl-28789184

ABSTRACT

We report a facile and direct fabrication method for integrating functional optical microstructures on the top surface of an optical fiber. A programmable maskless fabrication system was developed by using digital micromirror device (DMD), which allows rapid prototyping and low-cost fabrication without physical photomask. This maskless UV exposure system has the spatial resolution of 2.2 µm for an exposed area of 245 µm x 185 µm. Diverse optical microstructures were photolithographically defined on multimode fibers and a single mode optical fiber serially spliced with a coreless silica fiber segment. This method provides a new route for developing compact functional fiber-optic applications such as laser scanning, biosensing, or laser endomicroscopy.

5.
J Cardiovasc Ultrasound ; 22(4): 220-3, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25580198

ABSTRACT

A 22-year-old male presented with recurrent stroke, central cyanosis, and dyspnea. Transesophageal echocardiography and cardiac catheterization revealed bidirectional shunt flow through atrial septal defect (ASD) without pulmonary arterial hypertension. The orifice of inferior vena cava facing towards ASD opening led partially right to left shunt resulting in cyanosis with normal pulmonary arterial pressure.

6.
Proc Natl Acad Sci U S A ; 110(31): 12643-8, 2013 Jul 30.
Article in English | MEDLINE | ID: mdl-23858471

ABSTRACT

Organs are composites of tissue types with diverse developmental origins, and they rely on distinct stem and progenitor cells to meet physiological demands for cellular production and homeostasis. How diverse stem cell activity is coordinated within organs is not well understood. Here we describe a lineage-restricted, self-renewing common skeletal progenitor (bone, cartilage, stromal progenitor; BCSP) isolated from limb bones and bone marrow tissue of fetal, neonatal, and adult mice. The BCSP clonally produces chondrocytes (cartilage-forming) and osteogenic (bone-forming) cells and at least three subsets of stromal cells that exhibit differential expression of cell surface markers, including CD105 (or endoglin), Thy1 [or CD90 (cluster of differentiation 90)], and 6C3 [ENPEP glutamyl aminopeptidase (aminopeptidase A)]. These three stromal subsets exhibit differential capacities to support hematopoietic (blood-forming) stem and progenitor cells. Although the 6C3-expressing subset demonstrates functional stem cell niche activity by maintaining primitive hematopoietic stem cell (HSC) renewal in vitro, the other stromal populations promote HSC differentiation to more committed lines of hematopoiesis, such as the B-cell lineage. Gene expression analysis and microscopic studies further reveal a microenvironment in which CD105-, Thy1-, and 6C3-expressing marrow stroma collaborate to provide cytokine signaling to HSCs and more committed hematopoietic progenitors. As a result, within the context of bone as a blood-forming organ, the BCSP plays a critical role in supporting hematopoiesis through its generation of diverse osteogenic and hematopoietic-promoting stroma, including HSC supportive 6C3(+) niche cells.


Subject(s)
Bone and Bones/metabolism , Cartilage/metabolism , Hematopoiesis/physiology , Hematopoietic Stem Cells/metabolism , Signal Transduction/physiology , Stem Cell Niche/physiology , Animals , Antigens, Differentiation/biosynthesis , Antigens, Differentiation/genetics , Bone and Bones/cytology , Cartilage/cytology , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation/physiology , Hematopoietic Stem Cells/cytology , Mice , Mice, Transgenic , Stromal Cells/cytology , Stromal Cells/metabolism
7.
Opt Express ; 21(6): 7125-30, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23546094

ABSTRACT

We have demonstrated the enhancement of a GaN-based light emitting diode (LED) by means of a selective etching technique. A conventional LED structure was periodically etched, to form periodic microholes. It showed an improvement of the light extraction efficiency (LEE) of approximately 15%, compared to that of a conventional LED. Furthermore, nano-sized rods inside the microholes were randomly formed by using a powder mask, resulting in an LEE of 43%. From the result of confocal scanning electroluminescence measurement, the light emission arises mainly from the vicinity of the nanorods in the periodic microholes. Therefore, we found that nanorods randomly distributed in periodic microholes in a LED structure play a significant role in the reduction of total internal reflection, by acting as photon wave-guides and scattering centers. This method would be valuable for the fabrication of high efficiency GaN-based LED, in terms of technical simplification and cost.


Subject(s)
Gallium/chemistry , Lighting/instrumentation , Nanotechnology/instrumentation , Nanotubes/chemistry , Semiconductors , Surface Plasmon Resonance/instrumentation , Energy Transfer , Equipment Design , Equipment Failure Analysis
8.
PLoS One ; 7(9): e43291, 2012.
Article in English | MEDLINE | ID: mdl-23028449

ABSTRACT

A healthy skeleton relies on bone's ability to respond to external mechanical forces. The molecular mechanisms by which bone cells sense and convert mechanical stimuli into biochemical signals, a process known as mechanotransduction, are unclear. Focal adhesions play a critical role in cell survival, migration and sensing physical force. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that controls focal adhesion dynamics and can mediate reparative bone formation in vivo and osteoblast mechanotransduction in vitro. Based on these data, we hypothesized that FAK plays a role in load-induced bone formation. To test this hypothesis, we performed in vitro fluid flow experiments and in vivo bone loading studies in FAK-/- clonal lines and conditional FAK knockout mice, respectively. FAK-/- osteoblasts showed an ablated prostaglandin E(2) (PGE(2)) response to fluid flow shear. This effect was reversed with the re-expression of wild-type FAK. Re-expression of FAK containing site-specific mutations at Tyr-397 and Tyr-925 phosphorylation sites did not rescue the phenotype, suggesting that these sites are important in osteoblast mechanotransduction. Interestingly, mice in which FAK was conditionally deleted in osteoblasts and osteocytes did not exhibit altered load-induced periosteal bone formation. Together these data suggest that although FAK is important in mechanically-induced signaling in osteoblasts in vitro, it is not required for an adaptive response in vivo, possibly due to a compensatory mechanism that does not exist in the cell culture system.


Subject(s)
Focal Adhesion Protein-Tyrosine Kinases/metabolism , Mechanotransduction, Cellular , Osteoblasts/metabolism , Osteogenesis , Adaptation, Biological/genetics , Animals , Body Weight/genetics , Bone and Bones/metabolism , Cell Line , Dinoprostone/metabolism , Female , Focal Adhesion Kinase 2/metabolism , Focal Adhesion Protein-Tyrosine Kinases/genetics , Focal Adhesions/genetics , Gene Deletion , Gene Expression , Male , Mechanotransduction, Cellular/genetics , Mice , Mice, Knockout , Osteogenesis/genetics , Phosphorylation , Protein Transport , Ulna/anatomy & histology , Ulna/metabolism
9.
PLoS One ; 7(1): e30940, 2012.
Article in English | MEDLINE | ID: mdl-22295120

ABSTRACT

The ability to track microbes in real time in vivo is of enormous value for preclinical investigations in infectious disease or gene therapy research. Bacteria present an attractive class of vector for cancer therapy, possessing a natural ability to grow preferentially within tumours following systemic administration. Bioluminescent Imaging (BLI) represents a powerful tool for use with bacteria engineered to express reporter genes such as lux. BLI is traditionally used as a 2D modality resulting in images that are limited in their ability to anatomically locate cell populations. Use of 3D diffuse optical tomography can localize the signals but still need to be combined with an anatomical imaging modality like micro-Computed Tomography (µCT) for interpretation.In this study, the non-pathogenic commensal bacteria E. coli K-12 MG1655 and Bifidobacterium breve UCC2003, or Salmonella Typhimurium SL7207 each expressing the luxABCDE operon were intravenously (i.v.) administered to mice bearing subcutaneous (s.c) FLuc-expressing xenograft tumours. Bacterial lux signal was detected specifically in tumours of mice post i.v.-administration and bioluminescence correlated with the numbers of bacteria recovered from tissue. Through whole body imaging for both lux and FLuc, bacteria and tumour cells were co-localised. 3D BLI and µCT image analysis revealed a pattern of multiple clusters of bacteria within tumours. Investigation of spatial resolution of 3D optical imaging was supported by ex vivo histological analyses. In vivo imaging of orally-administered commensal bacteria in the gastrointestinal tract (GIT) was also achieved using 3D BLI. This study demonstrates for the first time the potential to simultaneously image multiple BLI reporter genes three dimensionally in vivo using approaches that provide unique information on spatial locations.


Subject(s)
Bacteria/genetics , Glioblastoma/microbiology , Luminescent Measurements/methods , Lung Neoplasms/microbiology , Molecular Imaging/methods , Administration, Oral , Animals , Cell Line, Tumor , Female , Genes, Reporter/genetics , Genetic Engineering , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Humans , Imaging, Three-Dimensional , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Mice , X-Ray Microtomography
10.
PLoS One ; 6(9): e25093, 2011.
Article in English | MEDLINE | ID: mdl-21966423

ABSTRACT

NF-κB activation is a critical signaling event in the inflammatory response and has been implicated in a number of pathological lung diseases. To enable the assessment of NF-κB activity in the lungs, we transfected a luciferase based NF-κB reporter into the lungs of mice or into Raw264.7 cells in culture. The transfected mice showed specific luciferase expression in the pulmonary tissues. Using these mouse models, we studied the kinetics of NF-κB activation following exposure to lipopolysaccharide (LPS). The Raw264.7 cells expressed a dose-dependent increase in luciferase following exposure to LPS and the NF-κB reporter mice expressed luciferase in the lungs following LPS challenge, establishing that bioluminescence imaging provides adequate sensitivity for tracking the NF-κB activation pathway. Interventions affecting the NF-κB pathway are promising clinical therapeutics, thus we further examined the effect of IKK-2 inhibition by MLN120B and glycogen synthase kinase 3 beta inhibition by TDZD-8 on NF-κB activation. Pre-treatment with either MLN120B or TDZD-8 attenuated NF-κB activation in the pulmonary tissues, which was accompanied with suppression of pro-inflammatory chemokine MIP-1ß and induction of anti-inflammatory cytokine IL-10. In summary, we have established an imaging based approach for non-invasive and longitudinal assessment of NF-κB activation and regulation during acute lung injury. This approach will potentiate further studies on NF-κB regulation under various inflammatory conditions.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Enzyme Inhibitors/pharmacology , Lung/metabolism , NF-kappa B/metabolism , Thiadiazoles/pharmacology , Animals , Cell Line , Chemokine CCL4/metabolism , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta , I-kappa B Kinase/antagonists & inhibitors , Interleukin-10/metabolism , Lipopolysaccharides/toxicity , Lung/drug effects , Lung/immunology , Mice
11.
Calcif Tissue Int ; 86(4): 325-32, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20213106

ABSTRACT

Integrins are cell-substrate adhesion proteins that initiate intracellular signaling and may serve as mechanosensors in bone. MLO-Y4 cells were stably transfected with a dominant negative form of the beta(1) integrin subunit (beta(1)DN) containing the transmembrane domain and cytoplasmic tail of beta(1) integrin. Cells expressing beta(1)DN had reduced vinculin localization to focal contacts but no change in intracellular actin organization. When exposed to oscillatory fluid flow, beta(1)DN cells exhibited a significant reduction in the upregulation of cyclooxygenase-2 gene expression and prostaglandin E(2) release. Similarly, the ratio of receptor activator of NF-kappaB ligand mRNA to osteoprotegerin mRNA decreased significantly after exposure to fluid flow in control cells but not in beta(1)DN cells. Interfering with integrin signaling did not affect mechanically induced intracellular calcium mobilization. These data suggest that integrins may initiate the cellular response of osteocytes to dynamic fluid flow and may serve as mechanosensitive molecules in bone.


Subject(s)
Integrin beta1/physiology , Mechanotransduction, Cellular/genetics , Osteocytes/metabolism , Biomechanical Phenomena , Calcium/metabolism , Cell Adhesion/genetics , Cells, Cultured , Humans , Integrin beta1/genetics , Integrin beta1/metabolism , Models, Biological , Osteocytes/physiology , Peptide Fragments/genetics , Peptide Fragments/metabolism , Physical Stimulation , Protein Subunits/genetics , Protein Subunits/metabolism , Pulsatile Flow/physiology , Signal Transduction/genetics , Transfection
12.
PLoS One ; 5(2): e9364, 2010 Feb 23.
Article in English | MEDLINE | ID: mdl-20186331

ABSTRACT

Early detection of tumors can significantly improve the outcome of tumor treatment. One of the most frequently asked questions in cancer imaging is how many cells can be detected non-invasively in a live animal. Although many factors limit such detection, increasing the light emission from cells is one of the most effective ways of overcoming these limitations. Here, we describe development and utilization of a lentiviral vector containing enhanced firefly luciferase (luc2) gene. The resulting single cell clones of the mouse mammary gland tumor (4T1-luc2) showed stable light emission in the range of 10,000 photons/sec/cell. In some cases individual 4T1-luc2 cells inserted under the skin of a nu/nu mouse could be detected non-invasively using a cooled CCD camera in some cases. In addition, we showed that only few cells are needed to develop tumors in these mice and tumor progression can be monitored right after the cells are implanted. Significantly higher luciferase activity in these cells allowed us to detect micrometastases in both, syngeneic Balb/c and nu/nu mice.


Subject(s)
Diagnostic Imaging/methods , Luciferases/metabolism , Luminescent Measurements/methods , Mammary Neoplasms, Experimental/metabolism , Animals , Cell Line, Tumor , Female , Genetic Vectors/genetics , Lentivirus/genetics , Luciferases/genetics , Luminescent Measurements/instrumentation , Lung Neoplasms/diagnosis , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mammary Neoplasms, Experimental/diagnosis , Mammary Neoplasms, Experimental/genetics , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Transplantation , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Sensitivity and Specificity , Time Factors , Transfection , Tumor Burden
13.
J Bone Miner Res ; 24(3): 411-24, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19016591

ABSTRACT

Mechanical loading of bone is important for maintenance of bone mass and structural stability of the skeleton. When bone is mechanically loaded, movement of fluid within the spaces surrounding bone cells generates fluid shear stress (FSS) that stimulates osteoblasts, resulting in enhanced anabolic activity. The mechanisms by which osteoblasts convert the external stimulation of FSS into biochemical changes, a process known as mechanotransduction, remain poorly understood. Focal adhesions are prime candidates for transducing external stimuli. Focal adhesion kinase (FAK), a nonreceptor tyrosine kinase found in focal adhesions, may play a key role in mechanotransduction, although its function has not been directly examined in osteoblasts. We examined the role of FAK in osteoblast mechanotransduction using short interfering RNA (siRNA), overexpression of a dominant negative FAK, and FAK(-/-) osteoblasts to disrupt FAK function in calvarial osteoblasts. Osteoblasts were subjected to varying periods oscillatory fluid flow (OFF) from 5 min to 4 h, and several physiologically important readouts of mechanotransduction were analyzed including: extracellular signal-related kinase 1/2 phosphorylation, upregulation of c-fos, cyclooxygenase-2, and osteopontin, and release of prostaglandin E(2). Osteoblasts with disrupted FAK signaling exhibited severely impaired mechanical responses in all endpoints examined. These data indicate the importance of FAK for both short and long periods of FSS-induced mechanotransduction in osteoblasts.


Subject(s)
Focal Adhesion Protein-Tyrosine Kinases/metabolism , Mechanotransduction, Cellular , Osteoblasts/cytology , Osteoblasts/enzymology , Stress, Mechanical , Animals , Cyclooxygenase 2/biosynthesis , Dinoprostone/metabolism , Enzyme Activation/drug effects , Enzyme Induction/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Focal Adhesion Protein-Tyrosine Kinases/deficiency , Mechanotransduction, Cellular/drug effects , Mice , Osteoblasts/drug effects , Osteopontin/metabolism , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , RNA, Small Interfering/metabolism , Rats , Rheology , Time Factors , Transfection , Up-Regulation/drug effects
14.
Nature ; 457(7228): 490-4, 2009 Jan 22.
Article in English | MEDLINE | ID: mdl-19078959

ABSTRACT

Little is known about the formation of niches, local micro-environments required for stem-cell maintenance. Here we develop an in vivo assay for adult haematopoietic stem-cell (HSC) niche formation. With this assay, we identified a population of progenitor cells with surface markers CD45(-)Tie2(-)alpha(V)(+)CD105(+)Thy1.1(-) (CD105(+)Thy1(-)) that, when sorted from 15.5 days post-coitum fetal bones and transplanted under the adult mouse kidney capsule, could recruit host-derived blood vessels, produce donor-derived ectopic bones through a cartilage intermediate and generate a marrow cavity populated by host-derived long-term reconstituting HSC (LT-HSC). In contrast, CD45(-)Tie2(-)alpha(V)(+)CD105(+)Thy1(+) (CD105(+)Thy1(+)) fetal bone progenitors form bone that does not contain a marrow cavity. Suppressing expression of factors involved in endochondral ossification, such as osterix and vascular endothelial growth factor (VEGF), inhibited niche generation. CD105(+)Thy1(-) progenitor populations derived from regions of the fetal mandible or calvaria that do not undergo endochondral ossification formed only bone without marrow in our assay. Collectively, our data implicate endochondral ossification, bone formation that proceeds through a cartilage intermediate, as a requirement for adult HSC niche formation.


Subject(s)
Cartilage/cytology , Hematopoietic Stem Cells/cytology , Osteogenesis/physiology , Stem Cell Niche/cytology , Stem Cell Niche/physiology , Animals , Antigens, CD/metabolism , Cartilage/embryology , Choristoma , Fetus/cytology , Hematopoietic Stem Cells/metabolism , Mandible/cytology , Mandible/embryology , Mice , Mice, Inbred C57BL , Skull/cytology , Skull/embryology , Sp7 Transcription Factor , Thy-1 Antigens/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/metabolism
15.
PLoS One ; 3(8): e2930, 2008 Aug 13.
Article in English | MEDLINE | ID: mdl-18698373

ABSTRACT

Wnt signals exercise strong cell-biological and regenerative effects of considerable therapeutic value. There are, however, no specific Wnt agonists and no method for in vivo delivery of purified Wnt proteins. Wnts contain lipid adducts that are required for activity and we exploited this lipophilicity by packaging purified Wnt3a protein into lipid vesicles. Rather than being encapsulated, Wnts are tethered to the liposomal surface, where they enhance and sustain Wnt signaling in vitro. Molecules that effectively antagonize soluble Wnt3a protein but are ineffective against the Wnt3a signal presented by a cell in a paracrine or autocrine manner are also unable to block liposomal Wnt3a activity, suggesting that liposomal packaging mimics the biological state of active Wnts. When delivered subcutaneously, Wnt3a liposomes induce hair follicle neogenesis, demonstrating their robust biological activity in a regenerative context.


Subject(s)
Wnt Proteins/biosynthesis , Wnt Proteins/physiology , Animals , Cell Culture Techniques , Liposomes , Male , Membrane Lipids/physiology , Mice , Mice, Inbred Strains , Signal Transduction , Wnt Proteins/antagonists & inhibitors , Wnt Proteins/isolation & purification , Wnt3 Protein , Wnt3A Protein
16.
Development ; 135(17): 2845-54, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18653558

ABSTRACT

The fetal skeleton arises from neural crest and from mesoderm. Here, we provide evidence that each lineage contributes a unique stem cell population to the regeneration of injured adult bones. Using Wnt1Cre::Z/EG mice we found that the neural crest-derived mandible heals with neural crest-derived skeletal stem cells, whereas the mesoderm-derived tibia heals with mesoderm-derived stem cells. We tested whether skeletal stem cells from each lineage were functionally interchangeable by grafting mesoderm-derived cells into mandibular defects, and vice versa. All of the grafting scenarios, except one, healed through the direct differentiation of skeletal stem cells into osteoblasts; when mesoderm-derived cells were transplanted into tibial defects they differentiated into osteoblasts but when transplanted into mandibular defects they differentiated into chondrocytes. A mismatch between the Hox gene expression status of the host and donor cells might be responsible for this aberration in bone repair. We found that initially, mandibular skeletal progenitor cells are Hox-negative but that they adopt a Hoxa11-positive profile when transplanted into a tibial defect. Conversely, tibial skeletal progenitor cells are Hox-positive and maintain this Hox status even when transplanted into a Hox-negative mandibular defect. Skeletal progenitor cells from the two lineages also show differences in osteogenic potential and proliferation, which translate into more robust in vivo bone regeneration by neural crest-derived cells. Thus, embryonic origin and Hox gene expression status distinguish neural crest-derived from mesoderm-derived skeletal progenitor cells, and both characteristics influence the process of adult bone regeneration.


Subject(s)
Bone Regeneration , Cell Lineage , Embryo, Mammalian/cytology , Homeodomain Proteins/metabolism , Stem Cells/cytology , Aging , Animals , Bone and Bones/abnormalities , Bone and Bones/embryology , Cell Differentiation , Cell Proliferation , Cell Survival , Cell Transplantation , Luminescence , Mesoderm/cytology , Mice , Neural Crest/cytology , Osteogenesis , Periosteum/cytology , Wound Healing
17.
Brain Res ; 1208: 170-80, 2008 May 07.
Article in English | MEDLINE | ID: mdl-18395703

ABSTRACT

The cerebellum is involved in complex physiological functions including motor control, sensory perception, cognition, language, and emotion. Humans and animals with prion diseases are characterized clinically by ataxia, postural abnormalities and cognitive decline. Pathology in the cerebellum affected by prions includes spongiform degeneration, neuronal loss, and gliosis. To develop an in vitro model system for studying prion biology in cerebellar cells, we established and characterized an immortal cell line (CRBL) isolated from the cerebellum of mice lacking expression of a protein involved in cell cycle arrest. The characteristics of the cells include morphological heterogeneity, rapid proliferation, serum responsiveness during growth, and a change in the number of chromosomes. CRBL cells expressed both neuronal and glial cell markers as well as a considerable level of cellular prion protein, PrP(C). Upon in vitro infection, CRBL cells exhibited selective susceptibility to prions isolated from different sources. These cells chronically propagated prions from SMB cells. Strain-specific prion infection in CRBL cells was not due to instability of the cell line, allelic variance, or mutations in the PrP gene. Molecular properties of prions derived from SMB cells were maintained in the infected CRBL cells. Our results suggest that the specific interaction between a prion strain and hosts determined the selective susceptibility of CRBL cells, which reflects the conditions in vivo. In addition to the future studies revealing cellular and molecular mechanism involved in prion pathogenesis, CRBL cells will contribute to the studies dealing with prion strain properties and host susceptibilities.


Subject(s)
Cell Line, Transformed/physiology , Disease Susceptibility , Neurons/physiology , Prions/metabolism , Animals , Cell Count , Cells, Cultured , Cerebellum/cytology , Cytogenetics/methods , Flow Cytometry , Glial Fibrillary Acidic Protein/metabolism , Glycosylation , Mice , Mice, Knockout , Transfection/methods , Tubulin/metabolism , Tumor Suppressor Protein p53/deficiency
18.
J Bone Joint Surg Am ; 90 Suppl 1: 3-8, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18292349

ABSTRACT

Osteoblasts are derived from two distinct embryonic lineages: cranial neural crest, and mesoderm. Both populations of cells are capable of forming bone and cartilage during fetal development and during adult bone repair, but whether they use equivalent molecular pathways to achieve osteoblast differentiation is unknown. We addressed this question in the context of cranial repair and focused on the role of Wnt signaling in mandibular skeletal healing. Transgenic Wnt reporter mice were used to pinpoint Wnt-responsive cells in the injury callus, and in situ hybridization was used to identify some of the Wnt ligands expressed by cells during the repair process. A gene transfer technique was employed to abrogate Wnt signaling during mandibular healing, and we found that reparative intramembranous ossification requires a functional Wnt pathway. Finally, we evaluated how constitutive activation of the Wnt pathway, caused by mutation of the LRP5 receptor, affected bone repair in the mandible. Taken together, these data underscore the functional requirement for Wnt signaling in cranial skeletal healing.


Subject(s)
Bone Regeneration/physiology , Mandible/physiology , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Disease Models, Animal , Gene Transfer Techniques , LDL-Receptor Related Proteins/genetics , Low Density Lipoprotein Receptor-Related Protein-5 , Male , Mice , Mutation , Signal Transduction
19.
J Drug Target ; 15(9): 632-9, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17968717

ABSTRACT

Liposomes have tremendous potential for efficient small molecule delivery. Previous studies, however, have been hampered by an inability to monitor their distribution and release of contents. Here, the authors demonstrate the real time monitoring of small molecule delivery using luciferin as a model. To monitor the release of luciferin in vivo, luciferin was packaged in thermosensitive liposomes and delivered into transgenic mice that constitutively express luciferase. Their experiments show the thermally induced release of the liposomal content in real time. In addition, the model provides evidence that the thermosensitive liposomes are stable over a long period of time ( approximately 3 weeks), and still release their content upon heating. These data present a strategy to monitor liposomal drug delivery in vivo with luciferin.


Subject(s)
Drug Carriers , Liposomes , Animals , Fluoresceins , Mice , Mice, Transgenic
20.
J Bone Miner Res ; 22(12): 1913-23, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17696762

ABSTRACT

UNLABELLED: Tissue regeneration is increasingly viewed as reactivation of a developmental process that, when misappropriated, can lead to malignant growth. Therefore, understanding the molecular and cellular pathways that govern tissue regeneration provides a glimpse into normal development as well as insights into pathological conditions such as cancer. Herein, we studied the role of Wnt signaling in skeletal tissue regeneration. INTRODUCTION: Some adult tissues have the ability to regenerate, and among these, bone is one of the most remarkable. Bone exhibits a persistent, lifelong capacity to reform after injury, and continual bone regeneration is a prerequisite to maintaining bone mass and density. Even slight perturbations in bone regeneration can have profound consequences, as exemplified by conditions such as osteoporosis and delayed skeletal repair. Here, our goal was to determine the role of Wnts in adult bone regeneration. MATERIALS AND METHODS: Using TOPgal reporter mice, we found that damage to the skeleton instigated Wnt reporter activity, specifically at the site of injury. We used a skeletal injury model to show that Wnt inhibition, achieved through adenoviral expression of Dkk1 in the adult skeleton, prevented the differentiation of osteoprogenitor cells. RESULTS: As a result, injury-induced bone regeneration was reduced by 84% compared with controls. Constitutive activation of the Wnt pathway resulting from a mutation in the Lrp5 Wnt co-receptor results in high bone mass, but our experiments showed that this same point mutation caused a delay in bone regeneration. In these transgenic mice, osteoprogenitor cells in the injury site were maintained in a proliferative state and differentiation into osteoblasts was delayed. CONCLUSIONS: When considered together, these data provide a framework for understanding the roles of Wnt signaling in adult bone regeneration and suggest a feasible approach to treating clinical conditions where enhanced bone formation is desired.


Subject(s)
Bone Regeneration , Signal Transduction , Stem Cells/metabolism , Tibia/metabolism , Wnt Proteins/metabolism , Animals , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Bone Regeneration/genetics , Cell Differentiation/genetics , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism , Low Density Lipoprotein Receptor-Related Protein-5 , Mice , Mice, Transgenic , Mutation , Osteoblasts/metabolism , Osteoblasts/pathology , Osteogenesis/genetics , Signal Transduction/genetics , Stem Cells/pathology , Tibia/pathology , Wnt Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...