Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Environ Sci (China) ; 23(4): 545-52, 2011.
Article in English | MEDLINE | ID: mdl-21793394

ABSTRACT

The destruction of methylphosphonic acid (MPA), a final product by hydrolysis/neutralization of organophosphorus agents such as sarin and VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothionate), was investigated in a a bench-scale, continuous concentric vertical double wall reactor under supercritical water oxidation condition. The experiments were conducted at a temperature range of 450-600 degrees C and a fixed pressure of 25 MPa. Hydrogen peroxide was used as an oxidant. The destruction efficiency (DE) was monitored by analyzing total organic carbon (TOC) and MPA concentrations using ion chromatography on the liquid effluent samples. The results showed that the DE of MPA up to 99.999% was achieved at a reaction temperature of 600 degrees C, oxygen concentration of 113% storichiometric requirement, and reactor residence time of 8 sec. On the basis of the data derived from experiments, a global kinetic rate equation for the DE of MPA and DE of TOC were developed by nonlinear regression analysis. The model predictions agreed well with the experimental data.


Subject(s)
Chemistry, Organic/instrumentation , Chemistry, Organic/methods , Organophosphorus Compounds/chemistry , Water/chemistry , Carbon/analysis , Carbon Dioxide/analysis , Carbon Monoxide/analysis , Kinetics , Methane/analysis , Oxidation-Reduction , Oxygen/analysis , Temperature , Time Factors
2.
Bioresour Technol ; 101(22): 8686-9, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20620052

ABSTRACT

This study examined the synthesis of biodiesel using supercritical or subcritical methanol with metal oxide catalysts. The transesterification of rapeseed oil was carried out with the metal oxide catalysts (SrO, CaO, ZnO, TiO(2) and ZrO(2)) to determine the most effective heterogeneous catalyst having the highest catalytic activity with minimum weight loss caused by dissolution. SrO and CaO dissolved in the biodiesel during the reaction because they were transformed to strontium methoxide and calcium methoxide, respectively. ZnO was the optimum catalyst for the transesterification of rapeseed oil owing to its high activity and minimum weight loss in supercritical methanol. The optimal reaction conditions included a molar ratio of methanol to oil of 40 in the presence of 1.0wt.% ZnO and a reaction time of 10min. The supercritical process with ZnO as a catalyst appears economically viable.


Subject(s)
Biofuels , Metals/chemistry , Methanol/chemistry , Oxides/chemistry , Plant Oils/chemistry , Catalysis , Fatty Acids, Monounsaturated , Rapeseed Oil
3.
Article in English | MEDLINE | ID: mdl-19241263

ABSTRACT

Catalytic hydrodechlorination of polychlorinated biphenyls (PCBs) in the presence of transformer oil was carried out in a batch mode to detoxify PCBs and to recycle the treated oil. Various metal supported catalysts, including 0.98 wt% Pt, 0.79 wt% Pd and 12.8 wt% Ni on gamma -alumina (gamma -Al(2)O(3)) support, and 57.6 wt% Ni on silicon oxide-aluminum oxide (SiO(2)-Al(2)O(3)) support were used for the hydrodechlorination. Metal particle size of the Pt catalyst was 2.0 nm and metal particle sizes of the Pd and Ni catalysts were in the range of 6.4-6.9 nm. Various supercritical fluids, supercritical carbon dioxide (scCO(2)), supercritical propane (scPropane), supercritical dimethyl ether (scDME) and supercritical isobutane (scIsobutane) were used as reaction media. PCBs conversion, dechlorination degree of PCBs, was measured using gas chromatograph (GC) with an electron capture detector (ECD). The hydrodechorination degree increased in the order Ni > Pd > Pt, possibly due to higher metal loading and larger metal size of the Ni catalysts. At temperatures below 175 degrees C, scCO(2) was effective as the reaction media for the catalytic hydrodechlorination of PCBs in the presence of the transformer oil. However, PCBs conversion decreased significantly when the hydrodechlorination was carried out in a homogeneous phase with using scPropane, scDME or scIsobutane as a reaction medium. This was attributed to dilution effect of the supercritical fluids. Molecular weights of the transformer oils before and after the catalytic hydrodechlorination were analyzed using high-performance size exclusion chromatography (HPSEC). The molecular weight of the treated oil with 100 % PCBs conversion did not change after the catalytic hydrodechlorination at 200 degrees C. This process has proven to be effective to detoxify PCBs containing transformer oil and to recycle the treated oil.


Subject(s)
Chlorine/isolation & purification , Conservation of Natural Resources , Petroleum/analysis , Polychlorinated Biphenyls/analysis , Catalysis , Chlorine/chemistry , Chromatography, Gel , Chromatography, High Pressure Liquid , Microscopy, Electron, Transmission , Molecular Weight , Solvents
4.
J Hazard Mater ; 167(1-3): 824-9, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19231072

ABSTRACT

A new supercritical water oxidation process for the simultaneous treatment of mixed wastewater containing wastewater from acrylonitrile manufacturing processes and copper-plating processes was investigated using a continuous tubular reactor system. Experiments were carried out at temperatures ranging from 400 to 600 degrees C and a pressure of 25 MPa. The residence time was fixed at 2s by changing the flow rates of feeds, depending on reaction temperature. The initial total organic carbon (TOC) concentration of the wastewaters and the O(2) concentration at the reactor inlet were kept constant at 0.49 and 0.74 mol/L. It was confirmed that the copper-plating wastewater accelerated the TOC conversion of acrylonitrile wastewater from 17.6% to 67.3% at a temperature of 450 degrees C. Moreover, copper and copper oxide nanoparticles were generated in the process of supercritical water oxidation (SCWO) of mixed wastewater. 99.8% of copper in mixed wastewater was recovered as solid copper and copper oxides at a temperature of 600 degrees C, with their average sizes ranging from 150 to 160 nm. Our study showed that SCWO provides a synergetic effect for simultaneous treatment of acrylonitrile and copper-plating wastewater. During the reaction, the oxidation rate of acrylonitrile wastewater was enhanced due to the in situ formation of nano-catalysts of copper and/or copper oxides, while the exothermic decomposition of acrylonitrile wastewater supplied enough heat for the recovery of solid copper and copper oxides from copper-plating wastewater. The synergetic effect of wastewater treatment by the newly proposed SCWO process leads to full TOC conversion, color removal, detoxification, and odor elimination, as well as full recovery of copper.


Subject(s)
Acrylonitrile/chemistry , Copper , Industrial Waste/prevention & control , Water Purification/methods , Catalysis , Metallurgy , Oxygen , Waste Disposal, Fluid/methods
5.
Article in English | MEDLINE | ID: mdl-20183511

ABSTRACT

Continuous catalytic hydrodechlorination of polychlorinated biphenyls (PCBs) in the presence of transformer oils was carried out in a fixed bed reactor using a 57.6 wt% Ni on silicon oxide-aluminum oxide (SiO(2)-Al(2)O(3)) catalyst. Reaction temperatures ranging 150-300 degrees C, PCBs concentrations ranging 50-200 ppm, and reaction times ranging 1-8 h were tested. At a higher reaction temperature or at a lower PCBs concentration, catalytic activity was higher and complete dechlorination of PCBs resulted even at long reaction time. Catalyst regeneration using hexane and 0.1 M sodium hydroxide (NaOH) was effective to restore the catalytic activity. Fresh, spent and regenerated catalysts were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. XRD analysis revealed growth of Ni crystallite size of the spent and the regenerated catalysts. XPS analysis showed that a considerable amount of chlorine and carbon species were deposited on the surface of the spent catalyst, which may play a role in the catalysts deactivation.


Subject(s)
Chlorides/isolation & purification , Environmental Pollution/prevention & control , Industrial Oils/analysis , Polychlorinated Biphenyls/chemistry , Water/chemistry , Aluminum Oxide/chemistry , Catalysis , Photoelectron Spectroscopy , Silicon Dioxide/chemistry , Temperature , Time Factors , X-Ray Diffraction
6.
Article in English | MEDLINE | ID: mdl-18074281

ABSTRACT

The oxidation rate of pentachlorophenol, [C(6)HCl(5)O] which is used to control termites and as a general herbicide and also as the probable human's carcinogen, was investigated in an isothermal continuous tubular reactor under supercritical water oxidation (SCWO) conditions. The experiments were conducted at a temperature of 400-550 degrees C and a fixed pressure of 25 MPa, with a residence time that ranged from 6 s to 26 s. The conversion of PCP was monitored by analyzing total organic carbon (TOC) on the liquid effluent samples. The initial TOC concentrations of PCP were varied from 0.74 mmol/L to 2.91 mmol/L and the oxygen concentrations were varied from 0.46 mmol/L to 3.52 mmol/L. By taking into account the dependence of the oxidant and TOC concentration on the reaction rate, a global PCP oxidation rate was regressed from the data of 48 experiments, to a 95% confidence level. The resulting activation energy was determined to be 43.56 +/- 1.47 kJ/mol, and the pre-exponential factor was (1.92 +/- 0.46) x 10(2) L(1.16) mmol(-0.16) s(-1). The reaction orders for the PCP (based on TOC) and the oxidant were 0.74 +/- 0.02 and 0.42 +/- 0.05, respectively.


Subject(s)
Pentachlorophenol/chemistry , Water/chemistry , Kinetics , Organic Chemicals/chemistry , Oxidation-Reduction , Temperature
7.
J Environ Sci (China) ; 19(6): 663-6, 2007.
Article in English | MEDLINE | ID: mdl-17969637

ABSTRACT

Hydrothermal decomposition of pentachlorophenol (PCP, C6HCl5O), as the probable human carcinogen, was investigated in a tubular reactor under subcritical and supercritical water with sodium hydroxide (NaOH) addition. The experiments were conducted at a temperature range of 300-420 degrees C and a fixed pressure of 25 MPa, with a residence time that ranged from 10 s to 70 s. Under the reaction conditions, the initial PCP concentrations were varied from 0.25 to 1.39 mmol/L and the NaOH concentrations were varied from 2.5 to 25 times of the concentrations of PCP. The result of this study showed that PCP conversion in supercritical water was highly dependent on the reaction temperature, residence time, and NaOH concentration. PCP conversion in subcritical water is, however, only dependent on reaction temperature. NaOH concentration and residence times were found to have little effect on PCP conversion in subcritical condition. It was found that NaOH concentration affected the dechlorinations of PCP in the supercritical water. The intermediates detected were proposed to be tetrachlorophenol and trichlorophenol, respectively.


Subject(s)
Environmental Pollutants/chemistry , Insecticides/chemistry , Pentachlorophenol/chemistry , Sodium Hydroxide/chemistry , Water/chemistry , Hot Temperature
8.
J Environ Sci (China) ; 19(5): 513-22, 2007.
Article in English | MEDLINE | ID: mdl-17915678

ABSTRACT

The destruction of toxic organic wastewaters from munitions demilitarization and complex industrial chemical clearly becomes an overwhelming problem if left to conventional treatment processes. Two options, incineration and supercritical water oxidation (SCWO), exist for the complete destruction of toxic organic wastewaters. Incinerator has associated problems such as very high cost and public resentment; on the other hand, SCWO has proved to be a very promising method for the treatment of many different wastewaters with extremely efficient organic waste destruction 99.99% with none of the emissions associated with incineration. In this review, the concepts of SCWO, result and present perspectives of application, and industrial status of SCWO are critically examined and discussed.


Subject(s)
Hazardous Substances , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Hot Temperature , Industrial Waste , Oxidation-Reduction , Water
9.
J Proteome Res ; 6(10): 3891-8, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17803294

ABSTRACT

Experimental autoimmune uveitis (EAU) is a well-known animal model of posterior uveitis that is one of the major causes of blindness. EAU could be induced in susceptible animals (i.e., Lewis rat) by immune reactions using evolutionarily conserved retinal proteins, such as interphoto-receptor retinoid binding protein (IRBP), or epitaphs of the protein. First, we prepared the following four test groups that subsequently increased or decreased inflammation. (1) Normal control group, (2) IRBP-induced uveitis group, (3) Hemin-treated uveitis group, and (4) Sn(IV) protoporphyrin IX dichloride (SnPP)-treated uveitis group. Second, in the vitreous bodies of Lewis rats, the infiltrated proteins were analyzed using two-dimensional electrophoresis (2-DE), MALDI-TOF/MS, and Micro LC/LC-MS/MS analysis. Finally, Western blotting was applied to confirm the relative amount of crystallins and phosphorylation sites of alphaB-crystallin. Thirty spots were identified in vitreous bodies, and 27 of these spots were members of the crystallin family. Unlike betaA4- and B2-crystallins (that were significantly increased without truncation), alphaA- and B-crystallins were only truncated in EAU vitreous body. Taken as a whole, in the rat EAU model, we suggest that post-translational truncations of alphaA- and alphaB-crystallins, phosphorylation of alphaB-crystallin, and new production of betaA4- and betaB2-crystallins are intercorrelated with uveitis progression and inflammatory responses.


Subject(s)
Autoimmune Diseases/metabolism , Crystallins/metabolism , Uveitis, Posterior/metabolism , Vitreous Body/metabolism , Animals , Chromatography, Liquid , Electrophoresis, Gel, Two-Dimensional , Hemin/pharmacology , Male , Metalloporphyrins/pharmacology , Phosphorylation , Protein Processing, Post-Translational , Protoporphyrins/pharmacology , Rats , Rats, Inbred Lew , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry , alpha-Crystallin A Chain/metabolism , alpha-Crystallin B Chain/metabolism
10.
J Hazard Mater ; 147(1-2): 8-14, 2007 Aug 17.
Article in English | MEDLINE | ID: mdl-17239533

ABSTRACT

A new design of supercritical water oxidation (SCWO) bench-scale reactor has been developed to handle high-risk wastes resulting from munitions demilitarization. The reactor consists of a concentric vertical double wall in which SCWO reaction takes place inside an inner tube (titanium grade 2, non-porous) whereas pressure resistance is ensured by a Hastelloy C-276 external vessel. The performances of this reactor were investigated with two different kinds of chemical warfare agent simulants: OPA (a mixture of isopropyl amine and isopropyl alcohol) as the binary precursor for nerve agent of sarin and thiodiglycol [TDG, (HOC(2)H(4))2S] as the model organic sulfur heteroatom. High destruction rates based on total organic carbon (TOC) were achieved (>99.99%) without production of chars or undesired gases such as carbon monoxide and methane. The carbon-containing product was carbon dioxide whereas the nitrogen-containing products were nitrogen and nitrous oxide. Sulfur was totally recovered in the aqueous effluent as sulfuric acid. No corrosion was noticed in the reactor after a cumulative operation time of more than 250 h. The titanium tube shielded successfully the pressure vessel from corrosion.


Subject(s)
Chemical Warfare Agents/chemistry , Hazardous Waste/prevention & control , Pressure , Carbon Dioxide , Nitrogen , Nitrous Oxide , Oxygen/chemistry , Sulfuric Acids , Titanium , Water/chemistry
11.
Article in English | MEDLINE | ID: mdl-16835111

ABSTRACT

The destruction of OPA from munitions demilitarization has been accomplished in supercritical water oxidation (SCWO) with oxygen as oxidant in an isothermal continuous-flow reactor. The experiments were conducted at a temperature of 689-887 K and a fixed pressure of 25 MPa, with a residence time that ranged from 7 s to 14 s. The destruction efficiency was measured by total organic carbon (TOC) conversion. At the reaction condition, the initial TOC concentrations of OPA were varied from 1.41 mmol/L to 19.57 mmol/L and the oxygen concentrations were varied from 15.03 mmol/L to 81.85 mmol/L. Experimental data showed that all the TOC conversions were >80% under the above experimental conditions. The kinetics of TOC disappearance, which is essential for the design, optimization, and control of reliable commercial SCWO reactor was developed by taking into account the dependence of the oxidant and TOC concentration on the reaction rate. A global TOC disappearance rates expression was regressed from the data of 38 experiments, to a 95% confidence level. The resulting activation energy was determined to be 44.01 +/- 1.52 kJ/mol, and the pre-exponential factor was (1.67 +/- 0.45) x 10(2) L(1.14) mmol(-0.14) s(-1). The reaction orders for the TOC and the oxidant were 0.98 +/- 0.01 and 0.16 +/- 0.02, respectively.


Subject(s)
2-Propanol/analysis , Chemical Warfare Agents/analysis , Propylamines/analysis , Water Pollutants, Chemical/analysis , Water/chemistry , Kinetics , Oxidation-Reduction
12.
J Environ Sci (China) ; 18(1): 13-6, 2006.
Article in English | MEDLINE | ID: mdl-20050541

ABSTRACT

Supercritical water oxidation (SCWO) has been drawing much attention due to effectively destroy a large variety of high-risk wastes resulting from munitions demilitarization and complex industrial chemical. An important design consideration in the development of supercritical water oxidation is the information of decomposition rate. In this paper, the decomposition rate of dimethyl methylphosphonate (DMMP), which is similar to the nerve agent VX and GB (Sarin) in its structure, was investigated under SCWO conditions. The experiments were performed in an isothermal tubular reactor with a H2O2 as an oxidant. The reaction temperatures were ranged from 398 to 633 degrees C at a fixed pressure of 24 MPa. The conversion of DMMP was monitored by analyzing total organic carbon (TOC) on the liquid effluent samples. It is found that the oxidative decomposition of DMMP proceeded rapidly and a high TOC decomposition up to 99.99% was obtained within 11 s at 555 degrees C. On the basis of data derived from experiments, a global kinetic equation for the decomposition of DMMP was developed. The model predictions agreed well with the experimental data.


Subject(s)
Central Nervous System Stimulants/chemistry , Organophosphorus Compounds/chemistry , Water/chemistry , Kinetics , Oxidation-Reduction
13.
J Hazard Mater ; 124(1-3): 119-24, 2005 Sep 30.
Article in English | MEDLINE | ID: mdl-15941618

ABSTRACT

Supercritical water oxidation can effectively destroy a large variety of high-risk wastes resulting from munitions demilitarization and complex industrial chemical. An important design consideration in the development of supercritical water oxidation is the information on the oxidation rate. In this paper, the oxidation rate of isopropyl amine (OPA), one of high-risk wastes resulting from munitions demilitarization, was investigated under supercritical water oxidation (SCWO) conditions in an isothermal tubular reactor. H2O2 was used as the oxidant. The reaction temperatures were ranged from 684 to 891 K and the residence times varied from 9 to 18s at a fixed pressure of 25 MPa. The conversion of OPA was monitored by analyzing total organic carbon (TOC) on the liquid effluent samples. The initial TOC concentrations of OPA varied from 7.21 to 143.78 mmol/l at the conversion efficiencies from 88.94 to 99.98%. By taking into account the dependence of reaction rate on oxidant and TOC concentration, a global power-law rate expression was regressed from 38 OPA experimental data. The resulting pre-exponential factor was 2.46(+/-0.65)x10(3)l(1.37)mmol(-0.37)s(-1); the activation energy was 64.12+/-1.94 kJ/mol; and the reaction orders for OPA (based on TOC) and oxidant were 1.13+/-0.02 and 0.24+/-0.01, respectively.


Subject(s)
Industrial Waste/prevention & control , Propylamines/metabolism , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/prevention & control , Water/chemistry , Kinetics , Osmolar Concentration , Oxidants/chemistry , Oxidation-Reduction , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...