Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36499910

ABSTRACT

We presented an explicit empirical model of the thermal resistance of AlGaN/GaN high-electron-mobility transistors on three distinct substrates, including sapphire, SiC, and Si. This model considered both a linear and non-linear thermal resistance model of AlGaN/GaN HEMT, the thickness of the host substrate layers, and the gate length and width. The non-linear nature of channel temperature-visible at the high-power dissipation stage-along with linear dependency, was constructed within a single equation. Comparisons with the channel temperature measurement procedure (DC) and charge-control-based device modeling were performed to verify the model's validity, and the results were in favorable agreement with the observed model data, with only a 1.5% error rate compared to the measurement data. An agile expression for the channel temperature is also important for designing power devices and monolithic microwave integrated circuits. The suggested approach provides several techniques for investigation that could otherwise be impractical or unattainable when utilizing time-consuming numerical simulations.

2.
Immun Ageing ; 19(1): 22, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35606855

ABSTRACT

BACKGROUND: Highly contagious respiratory diseases caused by viral infections are a constantly emerging threat, particularly the elderly with the higher risk of developing serious complications. Vaccines are the best strategy for protection against influenza-related diseases. However, the elderly has lower vaccine efficacy than young population and the age-driven decline of the influenza vaccine efficacy remains unresolved. OBJECTIVES: This study investigates the effect of an adjuvant, poly-γ-glutamic acid and alum (PGA/Alum) on vaccine efficacy in aged mice (18-months) and its mechanism is investigated using ovalbumin as a model antigen and a commercial pandemic H1N1 (pH1N1) flu vaccine. Antigen trafficking, dendritic cell (DC) activation, and the DC-mediated T cell activation were analyzed via in vivo imaging and flow cytometry. Antigen-specific humoral and cellular immune responses were evaluated in sera and splenocytes from the vaccinated mice. Also, we analyzed gene expression profiles of splenocytes from the vaccinated mice via single-cell transcriptome sequencing and evaluated the protective efficacy against pH1N1 virus challenge. RESULTS: Aged mice had lower antigen trafficking and DC activation than younger mice (6-weeks), which was ameliorated by PGA/Alum with increased antigen uptake and DC activation leading to improved antigen-specific IFN-γ+CD8+ T lymphocyte frequencies higher in the vaccinated aged mice, to a similar extent as PGA/Alum adjuvanted vaccine-immunized young mice. The results of single-cell transcriptome sequencing display that PGA/Alum also reduced the proportion of age-associated CD8+ T cell subsets and gene levels of inhibitory regulators in CD8+ T cells, which may play a role in the recovery of CD8+ T cell activation. Finally, PGA/Alum adjuvanted pH1N1 vaccine-immunized aged mice were completely protected (100% survival) compared to aged mice immunized with vaccine only (0% survival) after pH1N1 virus challenge, akin to the efficacy of the vaccinated young mice (100% survival). CONCLUSIONS: PGA/Alum adjuvanted pH1N1 vaccine-immunized aged mice showed a significant increase in vaccine efficacy compared to aged mice administered with vaccine only. The enhanced vaccine efficacy by PGA/Alum is associated with significant increases of activation of DCs and effector CD8+ T cells and a decrease in age-associated CD8+ T cell proportion of splenocytes. Collectively, PGA/Alum adjuvanted flu vaccine may be a promising vaccine candidate for the elderly.

4.
Sci Rep ; 11(1): 22401, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34789786

ABSTRACT

The characteristics of traps between the Al0.25Ga0.75N barrier and the GaN channel layer in a high-electron-mobility-transistors (HEMTs) were investigated. The interface traps at the Al0.25Ga0.75N/GaN interface as well as the border traps were experimentally analyzed because the Al0.25Ga0.75N barrier layer functions as a dielectric owing to its high dielectric constant. The interface trap density Dit and border trap density Nbt were extracted from a long-channel field-effect transistor (FET), conventionally known as a FATFET structure, via frequency-dependent capacitance-voltage (C-V) and conductance-voltage (G-V) measurements. The minimum Dit value extracted by the conventional conductance method was 2.5 × 1012 cm-2·eV-1, which agreed well with the actual transistor subthreshold swing of around 142 mV·dec-1. The border trap density Nbt was also extracted from the frequency-dependent C-V characteristics using the distributed circuit model, and the extracted value was 1.5 × 1019 cm-3·eV-1. Low-frequency (1/f) noise measurement provided a clearer picture of the trapping-detrapping phenomena in the Al0.25Ga0.75N layer. The value of the border trap density extracted using the carrier-number-fluctuation (CNF) model was 1.3 × 1019 cm-3·eV-1, which is of a similar level to the extracted value from the distributed circuit model.

5.
J Microbiol Biotechnol ; 31(2): 304-316, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33263336

ABSTRACT

Vaccination is the most effective way to prevent influenza virus infections. However, conventional vaccines based on hemagglutinin (HA) have to be annually updated because the HA of influenza viruses constantly mutates. In this study, we produced a 3M2e-3HA2-NP chimeric protein as a vaccine antigen candidate using an Escherichia coli expression system. The vaccination of chimeric protein (15 µg) conferred complete protection against A/Puerto Rico/8/1934 (H1N1; PR8) in mice. It strongly induced influenza virus-specific antibody responses, cytotoxic T lymphocyte activity, and antibody-dependent cellular cytotoxicity. To spare the dose and enhance the cross-reactivity of the chimeric, we used a complex of poly-γ-glutamic acid and alum (PGA/alum) as an adjuvant. PGA/alum-adjuvanted, low-dose chimeric protein (1 or 5 µg) exhibited higher cross-protective effects against influenza A viruses (PR8, CA04, and H3N2) compared with those of chimeric alone or alum-adjuvanted proteins in vaccinated mice. Moreover, the depletion of CD4+ T, CD8+ T, and NK cells reduced the survival rate and efficacy of the PGA/alum-adjuvanted chimeric protein. Collectively, the vaccination of PGA/alum-adjuvanted chimeric protein induced strong protection efficacy against homologous and heterologous influenza viruses in mice, which suggests that it may be a promising universal influenza vaccine candidate.


Subject(s)
Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Nucleocapsid Proteins/immunology , Viral Matrix Proteins/immunology , Adjuvants, Immunologic/administration & dosage , Alum Compounds/administration & dosage , Animals , Antibodies, Viral/immunology , Cross Reactions , Female , Hemagglutinins, Viral , Humans , Immunity, Humoral , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nucleocapsid Proteins/administration & dosage , Nucleocapsid Proteins/genetics , Polyglutamic Acid/administration & dosage , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , Viral Matrix Proteins/administration & dosage , Viral Matrix Proteins/genetics
6.
Front Immunol ; 10: 1604, 2019.
Article in English | MEDLINE | ID: mdl-31354739

ABSTRACT

The use of a good vaccine adjuvant may induce a higher immunogenicity profile of vaccine antigens. Here, we developed a new adjuvant by combining poly-γ-glutamic acid (γ-PGA) with alum (PGA/Alum) and investigated its ability to enhance the immunogenicity and the cross-reactive efficacy of pandemic H1N1 (pH1N1) influenza vaccine antigen. PGA/Alum enhanced antigen delivery to draining lymph nodes and antigen-specific immunogenicity in mice using OVA as a model antigen. It also greatly increased OVA-specific antibody production, cytotoxic T lymphocyte (CTL) activity, and antibody-dependent cellular cytotoxicity (ADCC). These abilities of PGA/Alum improved the protective efficacy of pH1N1 vaccine antigen by increasing hemagglutination-inhibition titers, enhancing ADCC and CTL activity, and speeding viral clearance following homologous viral challenge. Importantly, the cross-protective efficacy of pH1N1 vaccine against heterologous viruses [A/Puerto Rico/8/34 (H1N1) and A/Hong Kong/1/1968 (H3N2)] was significantly enhanced by PGA/Alum, and cross-reactive ADCC and CTL activities were observed. Together, our results strongly suggest that PGA/Alum may be a promising vaccine adjuvant for preventing influenza and other infectious diseases.


Subject(s)
Adjuvants, Immunologic , Alum Compounds , Cross Reactions/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Polyglutamic Acid/analogs & derivatives , Animals , Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Antigen Presentation/immunology , Cell Survival , Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Models, Animal , Humans , Immunity, Cellular , Immunity, Humoral , Immunization , Influenza, Human/immunology , Influenza, Human/prevention & control , Lymph Nodes/immunology , Lymph Nodes/metabolism , Lymph Nodes/pathology , Mice , Orthomyxoviridae Infections/prevention & control , Polyglutamic Acid/immunology
7.
Virol Sin ; 34(5): 563-571, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31214999

ABSTRACT

Chikungunya fever is a vector-borne viral disease transmitted to humans by chikungunya virus (CHIKV)-infected mosquitoes. There have been many outbreaks of CHIKV infection worldwide, and the virus poses ongoing risks to global health. To prevent and control CHIKV infection, it is important to improve the current CHIKV diagnostic approaches to allow for the detection of low CHIKV concentrations and to correctly distinguish CHIKV infections from those due to other mosquito-transmitted viruses, including dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV). Here, we produced monoclonal antibodies (mAbs) against the CHIKV envelope 2 protein (CHIKV-E2) and compared their sensitivity and specificity with commercially available mAbs using enzyme-linked immunosorbent assays (ELISA). Two anti-CHIKV-E2 mAbs, 19-1 and 21-1, showed higher binding affinities to CHIKV-E2 protein than the commercial mAbs did. In particular, the 19-1 mAb had the strongest binding affinity to inactivated CHIKV. Moreover, the 19-1 mAb had very little cross-reactivity with other mosquito-borne viruses, such as ZIKV, JEV, and DENV. These results suggest that the newly produced anti-CHIKV-E2 mAb, 19-1, could be used for CHIKV diagnostic approaches.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Chikungunya Fever/diagnosis , Chikungunya virus/immunology , Viral Envelope Proteins/immunology , Antibodies, Monoclonal/isolation & purification , Chikungunya Fever/immunology , Chikungunya virus/genetics , Humans , Sensitivity and Specificity , Serologic Tests , Viral Envelope Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...