Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 5537, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34545077

ABSTRACT

The long-term cycling of anode-free Li-metal cells (i.e., cells where the negative electrode is in situ formed by electrodeposition on an electronically conductive matrix of lithium sourced from the positive electrode) using a liquid electrolyte is affected by the formation of an inhomogeneous solid electrolyte interphase (SEI) on the current collector and irregular Li deposition. To circumvent these issues, we report an atomically defective carbon current collector where multivacancy defects induce homogeneous SEI formation on the current collector and uniform Li nucleation and growth to obtain a dense Li morphology. Via simulations and experimental measurements and analyses, we demonstrate the beneficial effect of electron deficiency on the Li hosting behavior of the carbon current collector. Furthermore, we report the results of testing anode-free coin cells comprising a multivacancy defective carbon current collector, a LixNi0.8Co0.1Mn0.1-based cathode and a nonaqueous Li-containing electrolyte solution. These cells retain 90% of their initial capacity for over 50 cycles under lean electrolyte conditions.

2.
ACS Appl Mater Interfaces ; 5(21): 11234-9, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24111701

ABSTRACT

We present the first report on carbon fiber-interwoven amorphous nano-SiOx/graphene prepared by a simple and facile room temperature synthesis of amorphous SiOx nanoparticles using silica, followed by their homogeneous dispersion with graphene nanosheets and carbon fibers in room temperature aqueous solution. Transmission and scanning electron microscopic imaging reveal that amorphous SiOx primary nanoparticles are 20-30 nm in diameter and carbon fibers are interwoven throughout the secondary particles of 200-300 nm, connecting SiOx nanoparticles and graphene nanosheets. Carbon fiber-interwoven nano-SiO0.37/graphene electrode exhibits impressive cycling performance and rate-capability up to 5C when evaluated as a rechargeable lithium battery anode, delivering discharge capacities of 1579-1263 mAhg(-1) at the C/5 rate with capacity retention of 80% and Coulombic efficiencies of 99% over 50 cycles, and nearly sustained microstructure. The cycling performance is attributed to synergetic effects of amorphous nano-SiOx, strain-tolerant robust microstructure with maintained particle connectivity and enhanced electrical conductivity.

4.
J Environ Sci (China) ; 24(3): 494-8, 2012.
Article in English | MEDLINE | ID: mdl-22655364

ABSTRACT

Aqueous ammonia (NH3) solution can be used as an alternative absorption for the control of CO2 emitted from flue gases due to its high absorption capacity, fast absorption rate and low corrosion problem. The emission of CO2 from iron and steel plants requires much attention, as they are higher than those emitted from power plants at a single point source. In the present work, low concentration ammonia liquor, 9 wt.%, was used with various additives to obtain the kinetic properties using the blast furnace gas model. Although a solution with a high ammonia concentration enables high CO2 absorption efficiency, ammonium ions are lost as ammonia vapor, resulting in reduced CO2 absorption due to the lower concentration of the ammonia absorbent. To decrease the vaporization of ammonia, ethylene glycol, glycerol and glycine, which contain more than one hydroxyl radical, were chosen. The experiments were conducted at 313 K similar to the CO2 absorption conditions for the blast furnace gas model.


Subject(s)
Ammonia/chemistry , Carbon Dioxide/chemistry , Ethylene Glycol/chemistry , Glycerol/chemistry , Glycine/chemistry , Air Pollutants/chemistry , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...