Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
4.
Faraday Discuss ; 241(0): 413-424, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36124991

ABSTRACT

Mechanochemistry has been extended to various polymer syntheses to achieve efficiency, greenness, and new products. However, many fundamental polymerization reactions have not been explored, although anionic polymerization of vinyl compounds has been pursued under mechanochemical conditions. Two solid monomers, 4-biphenyl methacrylate and 4-vinyl biphenyl, representing methacrylate and styrenic classes, respectively, were reacted with secondary butyl lithium under high-speed ball-milling. The alkyl-anion-promoted polymerization process was established by excluding radical initiation and producing the expected polymers with good efficiency. However, the generally expected features of anionic polymerization, such as molecular weight control and narrow dispersity, were not observed. Analysis of the milling parameters, reaction monitoring, and microstructural analysis revealed that the mechanism of the mechanochemical process differs from that of conventional anionic polymerizations. The mechanical force fractured the newly formed polymer chains via anionic initiation and generated macroradicals, which participated in the polymerization process. The anionic process governs the initiation step and the radical process becomes dominant during the propagation step.

5.
Chem Sci ; 13(39): 11496-11505, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36320385

ABSTRACT

Ruthenium-alkylidene initiated ring-opening metathesis polymerization has been realized under solid-state conditions by employing a mechanochemical ball milling method. This method promotes greenness and broadens the scope to include mechano-exclusive products. The carbene- and pyridine-based Grubbs 3rd-generation complex outperformed other catalysts and maintained similar mechanistic features of solution-phase reactions. High-speed ball milling provides sufficient mixing and energy to the solid reaction mixture, which is composed of an initiator and monomers, to minimize or eliminate the use of solvents. Therefore, the solubility and miscibility of monomers and Ru-initiators are not limiting factors in solid-state ball milling. A wide variety of solid monomers, including ionomers, fluorous monomers, and macromonomers, were successfully polymerized under ball milling conditions. Importantly, direct copolymerization of immiscible (ionic/hydrophobic) monomers exemplifies the synthesis of mechano-exclusive polymers that are difficult to make using traditional solution procedures. Finally, the addition of a small amount of a liquid additive (i.e., liquid-assisted grinding) minimized chain-degradation, enabling high-molecular-weight polymer synthesis.

6.
Chem Soc Rev ; 51(7): 2873-2905, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35302564

ABSTRACT

Mechanochemistry - the utilization of mechanical forces to induce chemical reactions - is a rarely considered tool for polymer synthesis. It offers numerous advantages such as reduced solvent consumption, accessibility of novel structures, and the avoidance of problems posed by low monomer solubility and fast precipitation. Consequently, the development of new high-performance materials based on mechanochemically synthesised polymers has drawn much interest, particularly from the perspective of green chemistry. This review covers the constructive mechanochemical synthesis of polymers, starting from early examples and progressing to the current state of the art while emphasising linear and porous polymers as well as post-polymerisation modifications.


Subject(s)
Mechanical Phenomena , Polymers , Polymerization , Polymers/chemistry , Solubility , Solvents
7.
Chem Commun (Camb) ; 57(91): 12139-12142, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34724524

ABSTRACT

A novel calix[n]triazolium was synthesized and exhibited excellent selectivity for AMP. The binding between calix[n]triazolium and chromenolate anions forms a non-fluorescent complex and the resulting supramolecular ensemble selectively detects AMP in water and induces "turn-on" fluorescence. The sensing platform is the first macrocyclic system to discriminate AMP from ADP and ATP through fluorescence changes.


Subject(s)
Adenosine Monophosphate/analysis , Calixarenes/chemistry , Fluorescence , Fluorescent Dyes/chemistry , Triazoles/chemistry , Molecular Structure , Spectrometry, Fluorescence
8.
Org Lett ; 23(21): 8622-8627, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34662139

ABSTRACT

Mechanochemistry was successfully applied to the functionalization of carboranes. The mechanochemical iridium(III)-catalyzed regioselective B(3)- and B(4)-amidation of unsubstituted o-carboranes with dioxazolones was developed. In addition, the mechanochemical iridium(III)-catalyzed regioselective B(4)-amidation of substituted o-carboranes was demonstrated. Because mechanochemical B-amidation proceeds smoothly without organic solvents or external heating, the present method is regarded as a sustainable and environmentally friendly surrogate for typical solvent-based reactions.

9.
Macromol Rapid Commun ; 42(22): e2100478, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34519386

ABSTRACT

A new sequential post-polymerization modification route has been developed for the synthesis of multifunctional polymers from a simple aldehyde polymer. In the first modification step, a template polymer derived from the radical polymerization of 4-vinyl benzaldehyde undergoes Rh-catalyzed hydroacylation with alkenes to furnish a group of ketone polymers. In the second modification step, Schiff base formation with alkoxy ammonium salts introduces a second group-an oxime functionality. Both the steps are highly efficient, introducing evenly distributed dual functionalities at the same position.


Subject(s)
Aldehydes , Ketones , Oximes , Polymerization , Polymers
10.
ChemSusChem ; 14(18): 3801-3805, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34245491

ABSTRACT

Despite their superior stability and facile handling, ionic polymers have limited solubility in most organic solvents, restricting the range of substrates and reaction conditions to which they can be applied. To overcome this solubility issue, the present study presents a solvent-free mechanochemical reaction. Specifically, a post-polymerization modification of ammonium-functionalized polyether was demonstrated using a solvent-free vibrational ball-milling technique. The formation of imine bonds between the ionic polymer and an aromatic aldehyde led to the complete conversion to imine within 1 h without any bond breakage on the polymer backbone. The viability of this approach for a wide range of aldehydes was also evaluated, highlighting the potential of the mechanochemical post-polymerization modification of polymers that are inaccessible by conventional solution approaches.

11.
ChemSusChem ; 14(19): 4301-4306, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34129287

ABSTRACT

Chemical upcycling of poly(bisphenol A carbonate) (PC) was achieved in this study with hydroxamic acid nucleophiles, giving rise to synthetically valuable 1,4,2-dioxazol-5-ones and bisphenol A. Using 1,5,7-triazabicyclo[4.4.0]-dec-5-ene (TBD), non-green carbodiimidazole or phosgene carbonylation agents used in conventional dioxazolone synthesis were successfully replaced with PC, and environmentally harmful bisphenol A was simultaneously recovered. Assorted hydroxamic acids exhibited good-to-excellent efficiencies and green chemical features, promising broad synthetic application scope. In addition, a green aryl amide synthesis process was developed, involving one-pot depolymerization from polycarbonate to dioxazolone followed by rhodium-catalyzed C-H amidation, including gram-scale examples with used compact discs.

12.
ACS Nano ; 15(3): 5513-5522, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33591730

ABSTRACT

The molecular weights and chain rigidities of block copolymers can strongly influence their self-assembly behavior, particularly when the block copolymers are under confinement. We investigate the self-assembly of bottlebrush block copolymers (BBCPs) confined in evaporative emulsions with varying molecular weights. A series of symmetric BBCPs, where polystyrene (PS) and polylactide (PLA) side-chains are grafted onto a polynorbornene (PNB) backbone, are synthesized with varying degrees of polymerization of the PNB (NPNB) ranging from 100 to 300. Morphological transitions from onion-like concentric particles to striped ellipsoids occur as the NPNB of the BBCP increases above 200, which is also predicted from coarse-grained simulations of BBCP-containing droplets by an implicit solvent model. This transition is understood by the combined effects of (i) an elevated entropic penalty associated with bending lamella domains of large molecular weight BBCP particles and (ii) the favorable parallel alignment of the backbone chains at the free surface. Furthermore, the morphological evolutions of onion-like and ellipsoidal particles are compared. Unlike the onion-like BBCP particles, ellipsoidal BBCP particles are formed by the axial development of ring-like lamella domains on the particle surface, followed by the radial propagation into the particle center. Finally, the shape anisotropies of the ellipsoidal BBCP particles are analyzed as a function of particle size. These BBCP particles demonstrate promising potential for various applications that require tunable rheological, optical, and responsive properties.

13.
Beilstein J Org Chem ; 15: 963-970, 2019.
Article in English | MEDLINE | ID: mdl-31164933

ABSTRACT

Mechanochemical polymerization is a rapidly growing area and a number of polymeric materials can now be obtained through green mechanochemical synthesis. In addition to the general merits of mechanochemistry, such as being solvent-free and resulting in high conversions, we herein explore rate acceleration under ball-milling conditions while the conventional solution-state synthesis suffer from low reactivity. The solvent-free mechanochemical polymerization of trimethylene carbonate using the organocatalysts 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) are examined herein. The polymerizations under ball-milling conditions exhibited significant rate enhancements compared to polymerizations in solution. A number of milling parameters were evaluated for the ball-milling polymerization. Temperature increases due to ball collisions and exothermic energy output did not affect the polymerization rate significantly and the initial mixing speed was important for chain-length control. Liquid-assisted grinding was applied for the synthesis of high molecular weight polymers, but it failed to protect the polymer chain from mechanical degradation.

14.
ACS Macro Lett ; 8(9): 1172-1178, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-35619453

ABSTRACT

We propose the defunctionalization of vinyl polymers as a strategy to access previously inaccessible polyolefin materials. By utilizing B(C6F5)3-catalyzed deoxygenation in the presence of silane, we demonstrate that eliminating the pendent ester in poly(methyl acrylate) effectively leaves a linear hydrocarbon polymer with methyl pendants, which is polypropylene. We further show that a polypropylene-b-polystyrene diblock copolymer and a polystyrene-b-polypropylene-b-polystyrene triblock copolymer can be successfully derived from the poly(methyl acrylate)-containing block polymer precursors and exhibit quite distinct materials properties due to their chemical transformation. This unique postpolymerization modification methodology, which goes beyond the typical functional group conversion, can offer access to a diverse range of unprecedented polyolefin block polymers with a variable degree of functional groups.

15.
J Org Chem ; 83(19): 11768-11776, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30187751

ABSTRACT

A practical, safe, and highly efficient carbonylation system involving a diphenyl carbonate, an organocatalyst, and various diols is presented herein and produces highly valuable cyclic carbonates. In reactions with a wide range of diols, diphenyl carbonate was activated by bicyclic guanidine 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as a catalyst, which successfully replaced highly toxic and unstable phosgene or its derivatives while maintaining the desired high reactivity. Moreover, this new system can be used to synthesize sterically demanding cyclic carbonates such as tetrasubstituted pinacol carbonates, which are not accessible via other conventional methods.

16.
ACS Macro Lett ; 7(5): 561-565, 2018 May 15.
Article in English | MEDLINE | ID: mdl-35632931

ABSTRACT

Mechanochemical postpolymerization modification is reported herein. The fast and efficient synthesis of a library of macromolecules with functional diversity and structural uniformity was realized without a solvent by means of a high speed ball-milling technique. A series of polymers prepared from 4-vinylbenzaldehyde (4-VBA) underwent solid-state Schiff base formations with a series of amines and amine derivatives. The efficient mixing and energy delivery provided by the collisions between balls not only promoted rapid imine formation but also eliminated the need for a chemical solvent, which is highly desirable for green chemical synthesis.

17.
ChemSusChem ; 10(18): 3529-3533, 2017 09 22.
Article in English | MEDLINE | ID: mdl-28613397

ABSTRACT

Mechanochemical polymerization of lactide is carried out by using ball milling. Mechanical energy from collisions between the balls and the vessel efficiently promotes an organic-base-mediated metal- and solvent-free solid-state polymerization. Investigation of the parameters of the ball-milling synthesis revealed that the degree of lactide ring-opening polymerization could be modulated by the ball-milling time, vibration frequency, mass of the ball media, and liquid-assisted grinding. Liquid-assisted grinding was found to be an especially important factor for achieving a high degree of mechanochemical polymerization. Although polymer-chain scission from the strong collision energy prevented mechanical-force-driven high-molecular-weight polymer synthesis, the addition of only a small amount of liquid enabled sufficient energy dissipation and poly(lactic acid) was thereby obtained with a molecular weight of over 1×105  g mol-1 .


Subject(s)
Dioxanes/chemistry , Green Chemistry Technology , Mechanical Phenomena , Polyesters/chemistry , Polyesters/chemical synthesis , Polymerization , Chemistry Techniques, Synthetic , Molecular Weight
19.
Angew Chem Int Ed Engl ; 54(49): 14805-9, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26474096

ABSTRACT

The first example of metal-free hydrosilylation polymerization between dienes and disilanes is developed by using a borane catalyst, B(C6F5)3 to replace precious transition-metal-based systems. Under the easy-to-handle and mild conditions, a step-growth polymerization of two readily available diene and disilane units was achieved with high degrees of polymerization. Various combinations of dienes and disilanes produced polycarbosilanes with a broad range of structures and properties.

20.
J Am Chem Soc ; 137(13): 4534-42, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25789561

ABSTRACT

Mechanistic investigations on the Cp*Rh(III)-catalyzed direct C-H amination reaction led us to reveal the new utility of 1,4,2-dioxazol-5-one and its derivatives as highly efficient amino sources. Stepwise analysis on the C-N bond-forming process showed that competitive binding of rhodium metal center to amidating reagent or substrate is closely related to the reaction efficiency. In this line, 1,4,2-dioxazol-5-ones were observed to have a strong affinity to the cationic Rh(III) giving rise to dramatically improved amidation efficiency when compared to azides. Kinetics and computational studies suggested that the high amidating reactivity of 1,4,2-dioxazol-5-one can also be attributed to the low activation energy of an imido-insertion process in addition to the high coordination ability. While the characterization of a cationic Cp*Rh(III) complex bearing an amidating reagent was achieved, its facile conversion to an amido-inserted rhodacycle allowed for a clear picture on the C-H amidation process. The newly developed amidating reagent of 1,4,2-dioxazol-5-ones was applicable to a broad range of substrates with high functional group tolerance, releasing carbon dioxide as a single byproduct. Additional attractive features of this amino source, such as they are more convenient to prepare, store, and use when compared to the corresponding azides, take a step closer toward an ideal C-H amination protocol.

SELECTION OF CITATIONS
SEARCH DETAIL
...