Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr D Struct Biol ; 80(Pt 3): 194-202, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38411550

ABSTRACT

The combination of X-ray free-electron lasers (XFELs) with serial femtosecond crystallography represents cutting-edge technology in structural biology, allowing the study of enzyme reactions and dynamics in real time through the generation of `molecular movies'. This technology combines short and precise high-energy X-ray exposure to a stream of protein microcrystals. Here, the XFEL structure of carbonic anhydrase II, a ubiquitous enzyme responsible for the interconversion of CO2 and bicarbonate, is reported, and is compared with previously reported NMR and synchrotron X-ray and neutron single-crystal structures.


Subject(s)
Carbonic Anhydrase II , Carbonic Anhydrase II/chemistry , Crystallography, X-Ray , Proteins/chemistry , Synchrotrons , X-Rays , Humans
2.
Angew Chem Int Ed Engl ; 62(36): e202307102, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37466016

ABSTRACT

Elemental phosphorus exhibits fascinating structural varieties and versatile properties. The unique nature of phosphorus bonds can lead to the formation of extremely complex structures, and detailed structural information on some phosphorus polymorphs is yet to be investigated. In this study, we investigated an unidentified crystalline phase of phosphorus, type-II red phosphorus (RP), by combining state-of-the-art structural characterization techniques. Electron diffraction tomography, atomic-resolution scanning transmission electron microscopy (STEM), powder X-ray diffraction, and Raman spectroscopy were concurrently used to elucidate the hidden structural motifs and their packing in type-II RP. Electron diffraction tomography, performed using individual crystalline nanowires, was used to identify a triclinic unit cell with volume of 5330 Å3 , which is the largest unit cell for elemental phosphorus crystals up to now and contains approximately 250 phosphorus atoms. Atomic-resolution STEM imaging, which was performed along different crystal-zone axes, confirmed that the twisted wavy tubular motif is the basic building block of type-II RP. Our study discovered and presented a new variation of building blocks in phosphorus, and it provides insights to clarify the complexities observed in phosphorus as well as other relevant systems.

3.
Small ; 18(7): e2107006, 2022 02.
Article in English | MEDLINE | ID: mdl-35006648

ABSTRACT

A new synthetic approach for tunable mesoporous metal-organic frameworks (MeMs) is developed. In this approach, mesopores are created in the process of heat conversion of highly mosaic metal-organic framework (MOF) crystals with non-interpenetrated low-density nanocrystallites into MOF crystals with two-fold interpenetrated high-density nanocrystallites. The two-fold interpenetration reduces the volume of the nanocrystallites in the mosaic crystal, and the accompanying localized agglomeration of the nanocrystallites results in the formation of mesopores among the localized crystallite agglomerates. The pore size can be easily modulated from 7 to 90 nm by controlling the heat treatment conditions, that is, the aging temperature and aging time. Various proteins can be encapsulated in the MeM, and immobilized enzymes show catalyst activity comparable to that of the free native enzymes. Immobilized ß-galactosidase is recyclable and the enzyme activity of the immobilized catalase is maintained after exposure to high temperatures and various organic solvents.


Subject(s)
Enzymes, Immobilized , Metal-Organic Frameworks , Catalysis , Enzymes, Immobilized/metabolism , Metal-Organic Frameworks/chemistry , Temperature
4.
IUCrJ ; 7(Pt 6): 985-994, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33209313

ABSTRACT

Enzymes are catalysts of biological processes. Significant insight into their catalytic mechanisms has been obtained by relating site-directed mutagenesis studies to kinetic activity assays. However, revealing the detailed relationship between structural modifications and functional changes remains challenging owing to the lack of information on reaction intermediates and of a systematic way of connecting them to the measured kinetic parameters. Here, a systematic approach to investigate the effect of an active-site-residue mutation on a model enzyme, human carbonic anhydrase II (CA II), is described. Firstly, structural analysis is performed on the crystallographic intermediate states of native CA II and its V143I variant. The structural comparison shows that the binding affinities and configurations of the substrate (CO2) and product (HCO3 -) are altered in the V143I variant and the water network in the water-replenishment pathway is restructured, while the proton-transfer pathway remains mostly unaffected. This structural information is then used to estimate the modifications of the reaction rate constants and the corresponding free-energy profiles of CA II catalysis. Finally, the obtained results are used to reveal the effect of the V143I mutation on the measured kinetic parameters (k cat and k cat/K m) at the atomic level. It is believed that the systematic approach outlined in this study may be used as a template to unravel the structure-function relationships of many other biologically important enzymes.

5.
Nat Commun ; 11(1): 4557, 2020 09 11.
Article in English | MEDLINE | ID: mdl-32917908

ABSTRACT

Why metalloenzymes often show dramatic changes in their catalytic activity when subjected to chemically similar but non-native metal substitutions is a long-standing puzzle. Here, we report on the catalytic roles of metal ions in a model metalloenzyme system, human carbonic anhydrase II (CA II). Through a comparative study on the intermediate states of the zinc-bound native CA II and non-native metal-substituted CA IIs, we demonstrate that the characteristic metal ion coordination geometries (tetrahedral for Zn2+, tetrahedral to octahedral conversion for Co2+, octahedral for Ni2+, and trigonal bipyramidal for Cu2+) directly modulate the catalytic efficacy. In addition, we reveal that the metal ions have a long-range (~10 Å) electrostatic effect on restructuring water network in the active site. Our study provides evidence that the metal ions in metalloenzymes have a crucial impact on the catalytic mechanism beyond their primary chemical properties.


Subject(s)
Carbonic Anhydrases/chemistry , Ions/chemistry , Metalloproteins/chemistry , Metals/chemistry , Binding Sites , Carbonic Anhydrase II/chemistry , Carbonic Anhydrase II/metabolism , Carbonic Anhydrases/metabolism , Catalysis , Catalytic Domain , Cobalt/chemistry , Copper/chemistry , Crystallography, X-Ray , Humans , Ions/metabolism , Kinetics , Metalloproteins/metabolism , Metals/metabolism , Models, Molecular , Nickel/chemistry , Protein Conformation , Structure-Activity Relationship , Substrate Specificity , Zinc/chemistry
6.
IUCrJ ; 6(Pt 4): 729-739, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31316816

ABSTRACT

Ependymin was first discovered as a predominant protein in brain extracellular fluid in fish and was suggested to be involved in functions mostly related to learning and memory. Orthologous proteins to ependymin called ependymin-related proteins (EPDRs) have been found to exist in various tissues from sea urchins to humans, yet their functional role remains to be revealed. In this study, the structures of EPDR1 from frog, mouse and human were determined and analyzed. All of the EPDR1s fold into a dimer using a monomeric subunit that is mostly made up of two stacking antiparallel ß-sheets with a curvature on one side, resulting in the formation of a deep hydrophobic pocket. All six of the cysteine residues in the monomeric subunit participate in the formation of three intramolecular disulfide bonds. Other interesting features of EPDR1 include two asparagine residues with glycosylation and a Ca2+-binding site. The EPDR1 fold is very similar to the folds of bacterial VioE and LolA/LolB, which also use a similar hydrophobic pocket for their respective functions as a hydrophobic substrate-binding enzyme and a lipoprotein carrier, respectively. A further fatty-acid binding assay using EPDR1 suggests that it indeed binds to fatty acids, presumably via this pocket. Additional interactome analysis of EPDR1 showed that EPDR1 interacts with insulin-like growth factor 2 receptor and flotillin proteins, which are known to be involved in protein and vesicle translocation.

7.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 6): 327-330, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29870015

ABSTRACT

Recent advances in X-ray free-electron laser (XFEL) sources have permitted the study of protein dynamics. Femtosecond X-ray pulses have allowed the visualization of intermediate states in enzyme catalysis. In this study, the growth of carbonic anhydrase II microcrystals (40-80 µm in length) suitable for the collection of XFEL diffraction data at the Pohang Accelerator Laboratory is demonstrated. The crystals diffracted to 1.7 Šresolution and were indexed in space group P21, with unit-cell parameters a = 42.2, b = 41.2, c = 72.0 Å, ß = 104.2°. These preliminary results provide the necessary framework for time-resolved experiments to study carbonic anhydrase catalysis at XFEL beamlines.


Subject(s)
Carbonic Anhydrase II/chemistry , Carbonic Anhydrase II/genetics , Amino Acid Sequence , Crystallization/methods , Crystallography, X-Ray/methods , Lasers
8.
IUCrJ ; 5(Pt 1): 93-102, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29354275

ABSTRACT

Human carbonic anhydrase II (hCA II) is a zinc metalloenzyme that catalyzes the reversible hydration/dehydration of CO2/HCO3-. Although hCA II has been extensively studied to investigate the proton-transfer process that occurs in the active site, its underlying mechanism is still not fully understood. Here, ultrahigh-resolution crystallographic structures of hCA II cryocooled under CO2 pressures of 7.0 and 2.5 atm are presented. The structures reveal new intermediate solvent states of hCA II that provide crystallographic snapshots during the restoration of the proton-transfer water network in the active site. Specifically, a new intermediate water (WI') is observed next to the previously observed intermediate water WI, and they are both stabilized by the five water molecules at the entrance to the active site (the entrance conduit). Based on these structures, a water network-restructuring mechanism is proposed, which takes place at the active site after the nucleophilic attack of OH- on CO2. This mechanism explains how the zinc-bound water (WZn) and W1 are replenished, which are directly responsible for the reconnection of the His64-mediated proton-transfer water network. This study provides the first 'physical' glimpse of how a water reservoir flows into the hCA II active site during its catalytic activity.

9.
Neuroreport ; 15(14): 2161-5, 2004 Oct 05.
Article in English | MEDLINE | ID: mdl-15371725

ABSTRACT

Granulocyte macrophage colony stimulating factor (GM-CSF) is a potent hematopoietic cytokine, which stimulates stem cell proliferation in the bone marrow. We now report that GM-CSF receptors expressed on neural progenitor cells and can mediate a biological response in cells to treat with GM-CSF treated neural progenitor cells exhibited a proliferative response and a marked decrease in terminal differentiation to mature neuron or astrocytes. GM-CSF treatment also suppressed neural progenitor cell apoptosis. These findings suggest that GM-CSF can stimulate the proliferation and inhibit the apoptosis of neural progenitor cells to expand the progenitor population, and that GM-CSF has a potential role in neural development or repair.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Neurons/drug effects , Stem Cells/drug effects , Animals , Apoptosis/drug effects , Apoptosis/physiology , Dose-Response Relationship, Drug , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Male , Mice , Mice, Inbred ICR , Neurons/cytology , Neurons/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/agonists , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis , Stem Cells/cytology , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...