Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 991
Filter
1.
Nanoscale ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829365

ABSTRACT

Perovskite quantum dots (PQDs) have received considerable attention as fluorescent materials due to their excellent optical properties. However, because PQDs contain ionic bonds, they have the disadvantage of being vulnerable to environmental conditions, so improving their stability is essential. Indeed, recent research has focused on improving both the stability and luminescence of PQDs by mixing them with methyl acetate (MeOAc) to suppress surface defects via purification. MeOAc reacts with the surface ligands of PQDs, resulting in ligand-controlled purification. However, while the ligands are limited for the PQD synthesis, the effect of ligand alkyl-chain length has not been reported. Therefore, we report herein a strategy for obtaining stable PQDs with tunable performances by using amine ligands of various chain lengths. The amine ligand is selected because it is very effective in interacting with the halide vacancies present on the surface of the perovskite crystal structure. The results indicate that MeOAc becomes less effective as the chain length of the ligand is increased, and more effective as the chain length is decreased. Consequently, PQDs treated with MeOAc and a short-chain ligand afford a quantum yield (QY) of 79.2% and are highly stable when exposed to thermal and ambient conditions. Therefore, we suggest a facile approach to suppressing the degradation of PQDs during the fabrication process.

2.
Vet Q ; 44(1): 1-8, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38823415

ABSTRACT

Dogs that had splenectomy are predisposed to fatal thrombotic conditions, and thrombocytosis is a risk factor for post-splenectomy hypercoagulability. However, in veterinary medicine, there are no specific therapeutic approaches for managing this hypercoagulability. This study aimed to determine the preventive effect of clopidogrel on post-operative hypercoagulability during the first 2 weeks post-splenectomy in dogs with splenic masses. This study included 12 dogs that had splenectomy. Seven dogs received no treatment (group A), and five were treated with clopidogrel (group B). Clopidogrel was loaded at 10 mg/kg on day 2 and continued at 2 mg/kg until day 14. Blood samples were collected on the day of surgery and 2, 7, and 14 days after splenectomy in both groups. In group B, thromboelastography (TEG) was performed on the same days. In group A, there was significant elevation of platelet counts on days 7 (p = 0.007) and 14 (p = 0.001) compared to day 0. In group B, the platelet counts were significantly elevated on day 7 (p = 0.032) but no significant difference was found on day 14 compared to day 0. Platelet counts on day 14 were significantly higher in group A than in group B (p = 0.03). The lower platelet counts were correlated with alterations in TEG parameters, and no significant differences were found in the K and α-angle values at all postoperative assessment points compared to day 0. Our study suggests that clopidogrel may reduce post-operative thrombocytosis and hypercoagulability in dogs that undergo splenectomy for splenic masses.


Subject(s)
Clopidogrel , Dog Diseases , Platelet Aggregation Inhibitors , Splenectomy , Thrombelastography , Thrombophilia , Animals , Dogs , Splenectomy/veterinary , Splenectomy/adverse effects , Clopidogrel/therapeutic use , Dog Diseases/blood , Dog Diseases/surgery , Dog Diseases/drug therapy , Platelet Count/veterinary , Female , Male , Thrombophilia/veterinary , Thrombophilia/drug therapy , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/pharmacology , Thrombelastography/veterinary , Postoperative Complications/veterinary , Postoperative Complications/prevention & control , Splenic Neoplasms/veterinary , Splenic Neoplasms/surgery , Splenic Neoplasms/blood , Splenic Diseases/veterinary , Splenic Diseases/surgery , Splenic Diseases/blood , Thrombocytosis/veterinary
3.
Nurse Educ Today ; 139: 106208, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38691901

ABSTRACT

OBJECTIVE: This study examines the characteristics and effects of virtual reality (VR) intravenous injection training programs for nurses and nursing students, using Kirkpatrick's four-level model of educational evaluation. Kirkpatrick's framework is based on the premise that learning from training programs can be classified into four levels: reaction, learning, behavior, and results. DESIGN: A systematic review. DATA SOURCES: Literature searches were conducted of eight electronic databases (PubMed, CINAHL, Cochrane, EMBASE, DBpia, KISS, RISS, KoreaMed) to identify original research articles from each database's inception to March 2023. REVIEW METHODS: For the 13 selected articles, quality appraisal was performed using the RoB 2 and ROBINS-I tools for randomized controlled trials (RCTs) and non-RCTs, respectively. RESULTS: Virtual intravenous simulators and desktop and immersive VR technologies were utilized in intravenous injection training. These VR technologies were applied either alone or in conjunction with simulators, focusing on junior nursing students without intravenous injection experience. We found a positive effect on nursing students' intravenous injection performance (Level 2: learning evaluation) in approximately half the studies. However, results were inconsistent due to measurement tools' diversity. In all studies, the degree of evaluation for Levels 1 (reaction evaluation), 3 (behavior evaluation), and 4 (results evaluation) of the Kirkpatrick Model was low. CONCLUSIONS: Desktop or immersive VR with low-fidelity or high-fidelity simulators should be provided to senior nursing students and new nurses for intravenous injection training. Additionally, standardized tools should be developed to accurately measure training effects. Finally, the Kirkpatrick Model's four levels should be evaluated to demonstrate the training programs' value.

4.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791150

ABSTRACT

Tomatoes contain many secondary metabolites such as ß-carotene, lycopene, phenols, flavonoids, and vitamin C, which are responsible for antioxidant activity. SlSGR1 encodes a STAY-GREEN protein that plays a critical role in the regulation of chlorophyll degradation in tomato leaves and fruits. Therefore, the present study was conducted to evaluate the sgr1 null lines based on their physicochemical characteristics, the content of secondary metabolites, and the γ-Aminobutyric acid (GABA) content. The total soluble solids (TSS), titrated acidity (TA), and brix acid ratio (BAR) of the sgr1 null lines were higher than those of the wild type(WT). Additionally, the sgr1 null lines accumulated higher levels of flavor-inducing ascorbic acid and total carotenoids compared to WT. Also, the total phenolic content, total flavonoids, GABA content, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical content of the sgr1 null lines were higher than those of the WT. Therefore, these studies suggest that the knockout of the SGR1 gene by the CRISPR/Cas9 system can improve various functional compounds in tomato fruit, thereby satisfying the antioxidant properties required by consumers.


Subject(s)
Antioxidants , CRISPR-Cas Systems , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Antioxidants/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Editing/methods , Gene Knockout Techniques , Carotenoids/metabolism , Phenols/metabolism , Ascorbic Acid/metabolism , Fruit/genetics , Fruit/metabolism , Fruit/chemistry , Flavonoids/metabolism , gamma-Aminobutyric Acid/metabolism
5.
Nanotechnology ; 35(33)2024 May 30.
Article in English | MEDLINE | ID: mdl-38744265

ABSTRACT

Transition metal dichalcogenides (TMDs) with a two-dimensional (2D) structure and semiconducting features are highly favorable for the production of NH3gas sensors. Among the TMD family, WS2, WSe2, MoS2, and MoSe2exhibit high conductivity and a high surface area, along with high availability, reasons for which they are favored in gas-sensing studies. In this review, we have discussed the structure, synthesis, and NH3sensing characteristics of pristine, decorated, doped, and composite-based WS2, WSe2, MoS2, and MoSe2gas sensors. Both experimental and theoretical studies are considered. Furthermore, both room temperature and higher temperature gas sensors are discussed. We also emphasized the gas-sensing mechanism. Thus, this review provides a reference for researchers working in the field of 2D TMD gas sensors.

6.
Mater Horiz ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38567487

ABSTRACT

Recently, inverted perovskite solar cells (PeSCs) have witnessed significant advancements; however, their long-term stability remains a challenge because of the oxidation of silver cathodes to form AgI by mobile iodides. To overcome this problem, we propose the integration of an electron-deficient naphthalene diimide-based zwitterion (NDI-ZI) as the cathode interlayer. Compared to the physical ion-blocking layer, it effectively captures ions by forming ionic bonds via electrostatic Coulombic interaction to suppress the migration of iodide and Ag ions. The NDI-ZI interlayer also suppresses the shunt paths and modulates the work function of the Ag electrode by forming interface dipoles, thereby enhancing charge extraction. FA0.85Cs0.15PbI3 based PeSCs incorporating NDI-ZI exhibited a noticeably high power conversion efficiency of up to 23.3% and outstanding stability, maintaining ∼80% of their initial performance over 1500 h at 85 °C and over 500 h under continuous 1-sun illumination. This study highlights the potential of a zwitterionic cathode interlayer in diverse perovskite optoelectronic devices, leading to their improved efficiency and stability.

7.
J Behav Addict ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38598290

ABSTRACT

Background and aims: Impaired inhibitory control accompanied by enhanced craving is hallmark of addiction. This study investigated the effects of transcranial direct current stimulation (tDCS) on response inhibition and craving in Internet gaming disorder (IGD). We examined the brain changes after tDCS and their correlation with clinical variables. Methods: Twenty-four males with IGD were allocated randomly to an active or sham tDCS group, and data from 22 participants were included for analysis. Participants self-administered bilateral tDCS over the dorsolateral prefrontal cortex (DLPFC) for 10 sessions. Stop-signal tasks were conducted to measure response inhibition and participants were asked about their cravings for Internet gaming at baseline and post-tDCS. Functional magnetic resonance imaging data were collected at pre- and post-tDCS, and group differences in resting-state functional connectivity (rsFC) changes from the bilateral DLPFC and nucleus accumbens were examined. We explored the relationship between changes in the rsFC and behavioral variables in the active tDCS group. Results: A significant group-by-time interaction was observed in response inhibition. After tDCS, only the active group showed a decrease in the stop-signal reaction time (SSRT). Although craving decreased, there were no significant group-by-time interactions or group main effects. The anterior cingulate cortex (ACC) showed group differences in post- versus pre-tDCS rsFC from the right DLPFC. The rsFC between the ACC and left middle frontal gyrus was negatively correlated with the SSRT. Discussion and conclusion: Our study provides preliminary evidence that bilateral tDCS over the DLPFC improves inhibitory control and could serve as a therapeutic approach for IGD.

8.
Nanoscale ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623652

ABSTRACT

Quasi-2D perovskites have emerged as highly promising materials for application in perovskite light-emitting diodes (PeLEDs), garnering significant attention due to their outstanding semiconductor properties. These materials boast an inherent multi-quantum well structure that imparts a robust confinement effect, particularly advantageous for blue emission. However, the development of blue emitters utilizing quasi-2D perovskites encounters challenges, notably colour instability, multipeak emission, and suboptimal fluorescence yield. The hole transfer layer (HTL) on which the perovskite layer is deposited in PeLEDs further affects the performance and efficiency. In this review, we delve into the evolution of blue PeLEDs and elucidate the optical properties of quasi-2D perovskites with the primary focus on HTL materials. We explore different HTL materials like PEDOT:PSS, metal oxides, and conjugated polyelectrolytes as well as ionic liquids, and their role in enhancing the colour stability, minimizing interfacial defects and increasing the fluorescence yield. This review endeavours to provide a holistic perspective of the different HTLs and serve as a valuable reference for researchers navigating the realm of HTL engineering towards the realization of high-performance blue quasi-2D PeLEDs.

9.
Exp Mol Med ; 56(3): 686-699, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38480902

ABSTRACT

Cancer cells often exhibit resistance to apoptotic cell death, but they may be vulnerable to other types of cell death. Elucidating additional mechanisms that govern cancer cell death is crucial for developing new therapies. Our research identified cyclic AMP-responsive element-binding protein 3 (CREB3) as a crucial regulator and initiator of a unique cell death mechanism known as karyoptosis. This process is characterized by nuclear shrinkage, deformation, and the loss of nuclear components following nuclear membrane rupture. We found that the N-terminal domain (aa 1-230) of full-length CREB3 (CREB3-FL), which is anchored to the nuclear inner membrane (INM), interacts with lamins and chromatin DNA. This interaction maintains a balance between the outward force exerted by tightly packed DNA and the inward constraining force, thereby preserving INM integrity. Under endoplasmic reticulum (ER) stress, aberrant cleavage of CREB3-FL at the INM leads to abnormal accumulation of the cleaved form of CREB3 (CREB3-CF). This accumulation disrupts the attachment of CREB3-FL to the INM, resulting in sudden rupture of the nuclear membrane and the onset of karyoptosis. Proteomic studies revealed that CREB3-CF overexpression induces a DNA damage response akin to that caused by UVB irradiation, which is associated with cellular senescence in cancer cells. These findings demonstrated that the dysregulation of CREB3-FL cleavage is a key factor in karyoptotic cell death. Consequently, these findings suggest new therapeutic strategies in cancer treatment that exploit the process of karyoptosis.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Nuclear Envelope , Proteomics , Apoptosis , DNA , Nuclear Envelope/metabolism , Humans , Cell Line, Tumor , Cyclic AMP Response Element-Binding Protein/metabolism
10.
J Biotechnol ; 387: 49-57, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38556215

ABSTRACT

2'-Fucosyllactose (2'-FL), one of the major human milk oligosaccharides, was produced in several engineered microorganisms. However, the low solubility of α-1,2-fucosyltransferase (α1,2-FucT) often becomes a bottleneck to produce maximum amount of 2'-FL in the microorganisms. To overcome this solubility issue, the following studies were conducted to improve the soluble expression of α1,2-FucT. Initially, hydrophobic amino acids in the hydrophilic region of the 6 α-helices were mutated, adhering to the α-helix rule. Subsequently, gfp11 was fused to the C-terminal of futC gene encoding α1,2-FucT (FutC), enabling selection of high-fluorescence mutants through split-GFP. Each mutant library was screened via fluorescence activated cell sorting (FACS) to separate soluble mutants for high-throughput screening. As a result, L80C single mutant and A121D/P124A/L125R triple mutant were found, and a combined quadruple mutant was created. Furthermore, we combined mutations of conserved sequences (Q150H/C151R/Q239S) of FutC, which showed positive effects in the previous studies from our lab, with the above quadruple mutants (L80C/A121D/P124A/L125R). The resulting strain produced approximately 3.4-fold higher 2'-FL titer than that of the wild-type, suggesting that the conserved sequence mutations are an independent subset of the mutations that further improve the solubility of the target protein acquired by random mutagenesis using split-GFP.


Subject(s)
Escherichia coli , Flow Cytometry , Fucosyltransferases , Green Fluorescent Proteins , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Solubility , Trisaccharides/metabolism , Galactoside 2-alpha-L-fucosyltransferase , Mutation , High-Throughput Screening Assays/methods , Humans , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
11.
Sci Rep ; 14(1): 3925, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38366023

ABSTRACT

Solute carrier family (SLC) transporters are expressed in the digestive system and play important roles in maintaining physiological functions in the body. In addition, SLC transporters act as oncoproteins or tumor-suppressor proteins during the development, progression, and metastasis of various digestive system cancers. SLC22A18, a member of the SLC22 gene family, is an orphan transporter with an unknown endogenous substrate. Previous study revealed that SLC22A18 is downregulated in colorectal cancer tissues and that it acts as a suppressor in colorectal cancer, although the effects of SLC22A18 variants on colon cancer cell proliferation, migration, and invasion are unknown. Therefore, in this study, we identified SLC22A18 variants found in multiple populations by searching public databases and determined the in vitro effects of these missense variations on transporter expression and cancer progression. Our results indicated that three missense SLC22A18 variants-p.Ala6Thr, p.Arg12Gln, and p.Arg86His-had significantly lower cell expression than the wild type, possibly owing to intracellular degradation. Furthermore, these three variants caused significantly higher proliferation, migration, and invasion of colon cancer cells than the wild type. Our findings suggest that missense variants of SLC22A18 can potentially serve as biomarkers or prognostic tools that enable clinicians to predict colorectal cancer progression.


Subject(s)
Colonic Neoplasms , Organic Cation Transport Proteins , Humans , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Colonic Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Prognosis , Tumor Suppressor Proteins/genetics , Organic Cation Transport Proteins/genetics
12.
J Korean Med Sci ; 39(6): e55, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374628

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) vaccination is effective in preventing the disease transmission and progression. However, the relatively mild disease course of the omicron variant and the decrease in antibodies over time after vaccination raise questions about the effectiveness of vaccination, especially in young people. We compared the prevalence of pneumonia and chest X-ray severity score according to vaccination status among patients < 50 years old with COVID-19. METHODS: From January 17 to March 17, 2022, 579 patients with COVID-19, who were < 50 years old and had a known vaccination history in our institution, were all included in this study. All patients underwent initial chest radiography, and follow-up chest radiographs were obtained every two days until discharge. Pneumonia was scored from the radiographs using the Brixia scoring system. The scores of the six lung zones were added for a total score ranging from 0 to 18. Patients were divided into four groups according to 10-year age intervals. Differences between groups were analyzed using the χ² or Fisher's exact tests for categorical variables and the Kruskal-Wallis test or analysis of variance for continuous variables. RESULTS: Among patients aged 12-19 years, the prevalence of pneumonia did not differ depending on vaccination status (non-vaccinated vs. vaccinated, 1/47 [2.1%] vs. 1/18 [5.6%]; P = 0.577). Among patients in their 20s, the prevalence of pneumonia was significantly higher among non-vaccinated patients than among vaccinated patients (8/28, 28.6% vs. 7/138, 5.1%, P < 0.001), similar to patients in their 40s (32/52 [61.5%] vs. 18/138 [13.0%]; P < 0.001). The chest X-ray severity score was also significantly higher in non-vaccinated patients than that in vaccinated patients in their 20s to their 40s (P < 0.001), but not among patients aged 12-19 years (P = 0.678). CONCLUSION: In patients aged 20-49 years, vaccinated patients had a significantly lower prevalence of pneumonia and chest X-ray severity score than non-vaccinated patients.


Subject(s)
COVID-19 , Humans , Adolescent , Middle Aged , COVID-19/epidemiology , SARS-CoV-2 , Prevalence , Retrospective Studies , Radiography , Vaccination
13.
J Orthop Res ; 42(7): 1587-1598, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38316622

ABSTRACT

Normalized signal intensity (SI) obtained from magnetic resonance imaging (MRI) has been used to track anterior cruciate ligament (ACL) postoperative remodeling. We aimed to assess the effect of MRI sequence (PD: proton density-weighted; T2: T2-weighted; CISS: constructive interference in steady state) on postoperative changes in healing ACLs/grafts. We hypothesized that CISS is better at detecting longitudinal SI and texture changes of the healing ACL/graft compared to the common clinical sequences (PD and T2). MR images of patients who underwent ACL surgery were evaluated and separated into groups based on surgical procedure (Bridge-Enhanced ACL Repair (BEAR; n = 50) versus ACL reconstruction (ACLR; n = 24)). CISS images showed decreasing SI across all timepoints in both the BEAR and ACLR groups (p < 0.01), PD and T2 images showed decreasing SI in the 6-to-12- and 12-to-24-month postoperative timeframes in the BEAR group (p < 0.02), and PD images additionally showed decreasing SI between 6- and 24-months postoperation in the ACLR group (p = 0.02). CISS images showed texture changes in both the BEAR and ACLR groups, showing increases in energy and decreases in entropy in the 6-to-12- and 6-to-24-month postoperative timeframes in the BEAR group (p < $\lt $ 0.04), and increases in energy, decreases in entropy, and increases in homogeneity between 6 and 24 months postoperation in the ACLR group (p < 0.04). PD images showed increases in energy and decreases in entropy between 6- and 24-months postoperation in the ACLR group (p < 0.008). Finally, CISS was estimated to require a smaller sample size than PD and T2 to detect SI differences related to postoperative remodeling.


Subject(s)
Anterior Cruciate Ligament Reconstruction , Anterior Cruciate Ligament , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Male , Female , Adult , Anterior Cruciate Ligament Reconstruction/methods , Young Adult , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament/diagnostic imaging , Adolescent , Wound Healing , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Injuries/diagnostic imaging , Retrospective Studies
14.
Korean J Physiol Pharmacol ; 28(2): 113-120, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38414394

ABSTRACT

Solute carrier 40A1 (SLC40A1) encodes ferroportin, which is the only known transmembrane protein that exports elemental iron from mammalian cells and is essential for iron homeostasis. Mutations in SLC40A1 are associated with iron-overload disorders. In addition to ferroportin diseases, SLC40A1 expression is downregulated in various cancer types. Despite the clinical significance of the SLC40A1 transporter, only a few studies have investigated genetic variants in SLC40A1. The present study was performed to identify genetic variations in the SLC40A1 promoter and functionally characterize each variant using in vitro assays. We investigated four haplotypes and five variants in the SLC40A1 promoter. We observed that haplotype 3 (H3) had significantly lower promoter activity than H1, whereas the activity of H4 was significantly higher than that of H1. Luciferase activity of H2 was comparable to that of H1. In addition, four variants of SLC40A1, c.-1355G>C, c.-662C>T, c.-98G>C, and c.-8C>G, showed significantly increased luciferase activity compared to the wild type (WT), whereas c.-750G>A showed significantly decreased luciferase activity compared to the WT. Three transcription factors, cAMP response element-binding protein-1 (CREB-1), chicken ovalbumin upstream promoter transcription factor 1, and hepatic leukemia factor (HLF), were predicted to bind to the promoter regions of SLC40A1 near c.-662C>T, c.-98G>C, and c.-8C>G, respectively. Among these, CREB-1 and HLF bound more strongly to the variant sequences than to the WT and functioned as activators of SLC40A1 transcription. Collectively, our findings indicate that the two SLC40A1 promoter haplotypes affect SLC40A1 transcription, which is regulated by CREB-1 and HLF.

15.
iScience ; 27(2): 108829, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38303690

ABSTRACT

Circadian clocks, generating daily rhythms in biological processes, maintain homeostasis in physiology, so clock alterations are considered detrimental. Studies in brain pathology support this by reporting abnormal circadian phenotypes in patients, but restoring the abnormalities by light therapy shows no dramatic effects. Recent studies on glial clocks report the complex effects of altered clocks by showing their beneficial effects on brain repairs. However, how neuronal clocks respond to brain pathology is elusive. This study shows that neuronal BMAL1, a core of circadian clocks, reduces its expression levels in neurodegenerative excitotoxicity. In the dentate gyrus of excitotoxic hippocampal lesions, reduced BMAL1 in granule cells precedes apoptosis. This subsequently reduces BMAL1 levels in neighbor neural stem cells and progenitors in the subgranular zone, enhancing proliferation. This shows the various BMAL1 roles depending on cell types, and its alterations can benefit brain repair. Thus, cell-type-specific BMAL1 targeting is necessary to treat brain pathology.

16.
BMB Rep ; 57(2): 79-85, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38303561

ABSTRACT

Pre-harvest sprouting is a critical phenomenon involving germination of seeds in the mother plant before harvest under relative humid conditions and reduced dormancy. In this paper, we generated HDR mutant lines with one region SNP (C/T) and an insertion of 6 bp (GGT/GGTGGCGGC) in OsERF1 genes for pre-harvest sprouting (PHS) resistance using CRISPR/Cas9 and a geminiviral replicon system. The incidence of HDR was 2.6% in transformed calli. T1 seeds were harvested from 12 HDR-induced calli and named ERF1-hdr line. Molecular stability, key agronomic properties, physiological properties, and biochemical properties of target genes in the ERF1-hdr line were investigated for three years. The ERF1-hdr line showed significantly enhanced seed dormancy and pre-harvest sprouting resistance. qRT-PCR analysis suggested that enhanced ABA signaling resulted in a stronger phenotype of PHS resistance. These results indicate that efficient HDR can be achieved through SNP/InDel replacement using a single and modular configuration applicable to different rice targets and other crops. This work demonstrates the potential to replace all genes with elite alleles within one generation and greatly expands our ability to improve agriculturally important traits. [BMB Reports 2024; 57(2): 79-85].


Subject(s)
Oryza , Oryza/genetics , CRISPR-Cas Systems/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/genetics , Seeds/metabolism , Phenotype
17.
ACS Nano ; 18(4): 2992-3001, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38227810

ABSTRACT

Phenyl-C61-butyric acid methyl ester (PCBM) can be used as a passivation material in perovskite solar cells (PeSCs) in order to reduce the trap site of the perovskite. Here, we show that a thick PCBM layer can form a smoother surface on the SnO2 substrate, improving the grain size and reducing the microstrain of the perovskite. High-temperature annealing treatment of PCBM layer not only increases its solvent resistance to perovskite precursor or antisolvent, but also enhances its molecular alignment, resulting in improved conductivity as an electron transport layer. High-temperature annealed PCBM (HT-PCBM) effectively minimizes trap-assisted nonradiative recombination by reducing trap density in perovskite and improving the electrical properties at the interface between SnO2 and perovskite layers. This HT-PCBM process significantly enhances the performance of the PeSCs, including the open-circuit voltage (VOC) from 0.39 to 0.77 V, fill factor from 52% to 65%, and power conversion efficiency (PCE) from 6.03% to 15.50%, representing substantial improvements compared to devices without PCBM. This PCE is the highest efficiency among conventional (n-i-p) Sn-Pb PeSCs reported to date. Moreover, passivating the trap sites of SnO2 and separating the interface between the Sn-containing perovskite and the substrate effectively have improved the stability of the Sn-Pb perovskite in the n-i-p structure. The optimized best device with HT-PCBM has maintained an efficiency of over 90% for more than 300 h at 85 °C and 5000 h at room temperature in a glovebox atmosphere.

18.
J Med Internet Res ; 26: e52134, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38206673

ABSTRACT

BACKGROUND: Robust and accurate prediction of severity for patients with COVID-19 is crucial for patient triaging decisions. Many proposed models were prone to either high bias risk or low-to-moderate discrimination. Some also suffered from a lack of clinical interpretability and were developed based on early pandemic period data. Hence, there has been a compelling need for advancements in prediction models for better clinical applicability. OBJECTIVE: The primary objective of this study was to develop and validate a machine learning-based Robust and Interpretable Early Triaging Support (RIETS) system that predicts severity progression (involving any of the following events: intensive care unit admission, in-hospital death, mechanical ventilation required, or extracorporeal membrane oxygenation required) within 15 days upon hospitalization based on routinely available clinical and laboratory biomarkers. METHODS: We included data from 5945 hospitalized patients with COVID-19 from 19 hospitals in South Korea collected between January 2020 and August 2022. For model development and external validation, the whole data set was partitioned into 2 independent cohorts by stratified random cluster sampling according to hospital type (general and tertiary care) and geographical location (metropolitan and nonmetropolitan). Machine learning models were trained and internally validated through a cross-validation technique on the development cohort. They were externally validated using a bootstrapped sampling technique on the external validation cohort. The best-performing model was selected primarily based on the area under the receiver operating characteristic curve (AUROC), and its robustness was evaluated using bias risk assessment. For model interpretability, we used Shapley and patient clustering methods. RESULTS: Our final model, RIETS, was developed based on a deep neural network of 11 clinical and laboratory biomarkers that are readily available within the first day of hospitalization. The features predictive of severity included lactate dehydrogenase, age, absolute lymphocyte count, dyspnea, respiratory rate, diabetes mellitus, c-reactive protein, absolute neutrophil count, platelet count, white blood cell count, and saturation of peripheral oxygen. RIETS demonstrated excellent discrimination (AUROC=0.937; 95% CI 0.935-0.938) with high calibration (integrated calibration index=0.041), satisfied all the criteria of low bias risk in a risk assessment tool, and provided detailed interpretations of model parameters and patient clusters. In addition, RIETS showed potential for transportability across variant periods with its sustainable prediction on Omicron cases (AUROC=0.903, 95% CI 0.897-0.910). CONCLUSIONS: RIETS was developed and validated to assist early triaging by promptly predicting the severity of hospitalized patients with COVID-19. Its high performance with low bias risk ensures considerably reliable prediction. The use of a nationwide multicenter cohort in the model development and validation implicates generalizability. The use of routinely collected features may enable wide adaptability. Interpretations of model parameters and patients can promote clinical applicability. Together, we anticipate that RIETS will facilitate the patient triaging workflow and efficient resource allocation when incorporated into a routine clinical practice.


Subject(s)
Algorithms , COVID-19 , Triage , Humans , Biomarkers , COVID-19/diagnosis , Hospital Mortality , Neural Networks, Computer , Triage/methods , Republic of Korea
19.
J Proteome Res ; 23(3): 905-915, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38293943

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis due to the absence of diagnostic markers and molecular targets. Here, we took an unconventional approach to identify new molecular targets for pancreatic cancer. We chose uncharacterized protein evidence level 1 without function annotation from extensive proteomic research on pancreatic cancer and focused on proline and serine-rich 2 (PROSER2), which ranked high in the cell membrane and cytoplasm. In our study using cell lines and patient-derived orthotopic xenograft cells, PROSER2 exhibited a higher expression in cells derived from primary tumors than in those from metastatic tissues. PROSER2 was localized in the cell membrane and cytosol by immunocytochemistry. PROSER2 overexpression significantly reduced the metastatic ability of cancer cells, whereas its suppression had the opposite effect. Proteomic analysis revealed that PROSER2 interacts with STK25 and PDCD10, and their binding was confirmed by immunoprecipitation and immunocytochemistry. STK25 knockdown enhanced metastasis by decreasing p-AMPK levels, whereas PROSER2-overexpressing cells increased the level of p-AMPK, indicating that PROSER2 suppresses invasion via the AMPK pathway by interacting with STK25. This is the first demonstration of the novel role of PROSER2 in antagonizing tumor progression via the STK25-AMPK pathway in PDAC. LC-MS/MS data are available at MassIVE (MSV000092953) and ProteomeXchange (PXD045646).


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Humans , AMP-Activated Protein Kinases , Chromatography, Liquid , Proteomics , Cell Proliferation , Cell Movement , Tandem Mass Spectrometry , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/genetics , Disease Models, Animal , Protein Serine-Threonine Kinases , Intracellular Signaling Peptides and Proteins
20.
Small Methods ; 8(2): e2300578, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37649231

ABSTRACT

Over the past couple of decades, immense research has been carried out to understand the photo-physics of an organic solar cell (OSC) that is important to enhance its efficiency and stability. Since OSCs undergoes complex photophysical phenomenon, studying these factors has led to designing new materials and implementing new strategies to improve efficiency in OSCs. In this regard, the invention of the non-fullerene acceptorshas greatly revolutionized the understanding of the fundamental processes occurring in OSCs. However, such vital fundamental research from device physics perspectives is carried out on glovebox (GB) processed OSCs and there is a scarcity of research on air-processed (AP) OSCs. This review will focus on charge carrier dynamics such as exciton diffusion, exciton dissociation, charge-transfer states, significance of highest occupied molecular orbital-offsets, and hole-transfer efficiencies of GB-OSCs and compare them with the available data from the AP-OSCs. Finally, key requirements for the fabrication of efficient AP-OSCs will be presented from a charge-carrier dynamics perspective. The key aspects from the charge-carrier dynamics view to fabricate efficient OSCs either from GB or air are provided.

SELECTION OF CITATIONS
SEARCH DETAIL
...