Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38067874

ABSTRACT

The condition of a railway vehicle's wheels is an essential factor for safe operation. However, the current inspection of railway vehicle wheels is limited to periodic major and minor maintenance, where physical anomalies such as vibrations and noise are visually checked by maintenance personnel and addressed after detection. As a result, there is a need for predictive technology concerning wheel conditions to prevent railway vehicle damage and potential accidents due to wheel defects. Insufficient predictive technology for railway vehicle's wheel conditions forms the background for this study. In this research, a real-time tire wear classification system for light-rail rubber tires was proposed to reduce operational costs, enhance safety, and prevent service delays. To perform real-time condition classification of rubber tires, operational data from railway vehicles, including temperature, pressure, and acceleration, were collected. These data were processed and analyzed to generate training data. A 1D-CNN model was employed to classify tire conditions, and it demonstrated exceptionally high performance with a 99.4% accuracy rate.

2.
Sensors (Basel) ; 23(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37896551

ABSTRACT

The wheels of railway vehicles are of paramount importance in relation to railroad operations and safety. Currently, the management of railway vehicle wheels is restricted to post-event inspections of the wheels whenever physical phenomena, such as abnormal vibrations and noise, occur during the operation of railway vehicles. To address this issue, this paper proposes a method for predicting abnormalities in railway wheels in advance and enhancing the learning and prediction performance of machine learning algorithms. Data were collected during the operation of Line 4 of the Busan Metro in South Korea by directly attaching sensors to the railway vehicles. Through the analysis of key factors in the collected data, factors that can be used for tire condition classification were derived. Additionally, through data distribution analysis and correlation analysis, factors for classifying tire conditions were identified. As a result, it was determined that the z-axis of acceleration has a significant impact, and machine learning techniques such as SVM (Linear Kernel, RBF Kernel) and Random Forest were utilized based on acceleration data to classify tire conditions into in-service and defective states. The SVM (Linear Kernel) yielded the highest recognition rate at 98.70%.

SELECTION OF CITATIONS
SEARCH DETAIL
...