Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Biotechnol ; 28(1): 261-267, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30815318

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver disorders. Possible links have been recently found between the gut-microbiota and the host metabolism in development of NAFLD and obesity. Therefore, understanding the changes in intestinal microbiota during the progression of NAFLD, is important. In this study, the effect of Kombucha tea (KT), obtained by microbial fermentation of sugared black tea, was investigated on gut-microbiota during the progression of NAFLD. The results indicated a decrease in Erysipelotrichia class by treatment with KT in comparison to the methionine/choline-deficient (MCD)-fed db/db mice. Allobaculum, Turicibacter, and Clostridium genera, were only detected in MCD-fed db/db mice and were decreased after treatment with KT, whereas Lactobacillus was more abundant in MCD + KT-fed mice than in MCD only-fed mice and Mucispirillum, was found only in the MCD + KT-fed mice group. Our results demonstrated that the change of intestinal microbiota was influenced by KT intake, contributing to combat NAFLD.

2.
Nat Commun ; 9(1): 31, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29295978

ABSTRACT

Bacterial-fungal interactions are widely found in distinct environments and contribute to ecosystem processes. Previous studies of these interactions have mostly been performed in soil, and only limited studies of aerial plant tissues have been conducted. Here we show that a seed-borne plant pathogenic bacterium, Burkholderia glumae (Bg), and an air-borne plant pathogenic fungus, Fusarium graminearum (Fg), interact to promote bacterial survival, bacterial and fungal dispersal, and disease progression on rice plants, despite the production of antifungal toxoflavin by Bg. We perform assays of toxoflavin sensitivity, RNA-seq analyses, lipid staining and measures of triacylglyceride content to show that triacylglycerides containing linolenic acid mediate resistance to reactive oxygen species that are generated in response to toxoflavin in Fg. As a result, Bg is able to physically attach to Fg to achieve rapid and expansive dispersal to enhance disease severity.


Subject(s)
Air Microbiology , Burkholderia/physiology , Fusarium/physiology , Oryza/microbiology , Seeds/microbiology , Burkholderia/metabolism , Drug Resistance, Fungal/drug effects , Fusarium/classification , Fusarium/genetics , Gene Expression Profiling , Gene Expression Regulation, Fungal , Host-Pathogen Interactions , Microbial Interactions , Mutation , Phylogeny , Plant Diseases/microbiology , Pyrimidinones/metabolism , Pyrimidinones/pharmacology , Triazines/metabolism , Triazines/pharmacology
3.
Plant Pathol J ; 32(5): 377-387, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27721687

ABSTRACT

Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus, is one of the most important viruses of cultivated tomatoes worldwide, mainly causing yellowing and curling of leaves with stunting in plants. TYLCV causes severe problems in sub-tropical and tropical countries, as well as in Korea. However, the mechanism of TYLCV infection remains unclear, although the function of each viral component has been identified. TYLCV C4 codes for a small protein involved in various cellular functions, including symptom determination, gene silencing, viral movement, and induction of the plant defense response. In this study, through yeast-two hybrid screenings, we identified TYLCV C4-interacting host proteins from both healthy and symptom-exhibiting tomato tissues, to determine the role of TYLCV C4 proteins in the infection processes. Comparative analyses of 28 proteins from healthy tissues and 36 from infected tissues showing interactions with TYLCV C4 indicated that TYLCV C4 mainly interacts with host proteins involved in translation, ubiquitination, and plant defense, and most interacting proteins differed between the two tissues but belong to similar molecular functional categories. Four proteins-two ribosomal proteins, S-adenosyl-L-homocysteine hydrolase, and 14-3-3 family protein-were detected in both tissues. Furthermore, the identified proteins in symptom-exhibiting tissues showed greater involvement in plant defenses. Some are key regulators, such as receptor-like kinases and pathogenesis-related proteins, of plant defenses. Thus, TYLCV C4 may contribute to the suppression of host defense during TYLCV infection and be involved in ubiquitination for viral infection.

4.
Curr Genet ; 62(1): 115-23, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26454852

ABSTRACT

Members of the genus Burkholderia occupy remarkably diverse niches, with genome sizes ranging from ~3.75 to 11.29 Mbp. The genome of Burkholderia glumae ranges in size from ~5.81 to 7.89 Mbp. Unlike other plant pathogenic bacteria, B. glumae can infect a wide range of monocot and dicot plants. Comparative genome analysis of B. glumae strains can provide insight into genome variation as well as differential features of whole metabolism or pathways between multiple strains of B. glumae infecting the same host. Comparative analysis of complete genomes among B. glumae BGR1, B. glumae LMG 2196, and B. glumae PG1 revealed the largest departmentalization of genes onto separate replicons in B. glumae BGR1 and considerable downsizing of the genome in B. glumae LMG 2196. In addition, the presence of large-scale evolutionary events such as rearrangement and inversion and the development of highly specialized systems were found to be related to virulence-associated features in the three B. glumae strains. This connection may explain why this bacterium broadens its host range and reinforces its interaction with hosts.


Subject(s)
Biological Evolution , Burkholderia/genetics , Genome, Bacterial , Genomics , Burkholderia/classification , Burkholderia/metabolism , Gene Rearrangement , Genome-Wide Association Study , Genomics/methods , Metabolic Networks and Pathways , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Virulence/genetics
5.
Food Sci Biotechnol ; 25(3): 861-866, 2016.
Article in English | MEDLINE | ID: mdl-30263346

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is associated with the increased accumulation of hepatocellular lipids. Although Kombucha tea (KT) has emerged as a substance protecting the liver from damage, the effects of KT in NAFLD remain unclear. Hence, we investigated whether KT influenced hepatic steatosis. Db/db mice were fed either control or methionine/choline-deficient (MCD) diets for 4 weeks. The MCD diet group was treated with KT or water for 3 weeks. KT treatment alleviated macrovesicular steatosis compared to the MCD-fed group. The levels of triglyceride, ALT, and AST also decreased in the KT+MCD-treated db/db mice. RNA expression in the MCD+KT group showed reduced triglyceride synthesis and uptake of fatty acids. Immunostaining and western blot assays for active caspase-3 demonstrated a lower level of apoptosis in the MCD+KT than in the MCD group. These results demonstrate that KT attenuated lipid accumulation and protected the liver from damage, promoting liver restoration in mice.

SELECTION OF CITATIONS
SEARCH DETAIL
...