Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 6(12): 5372-5384, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37967413

ABSTRACT

Drug-releasing contact lenses are emerging therapeutic systems for treating ocular diseases. However, their applicability is limited by the burst release of drugs during lens wear and premature drug leakage during packaging, rendering the precise control of release duration or dose difficult. Here, we introduce a pH-sensitive contact lens exhibiting on-demand drug release only during lens wear and negligible premature drug leakage during packaging and transportation, which is accomplished by incorporating drug-loaded mesoporous silica nanoparticles (MSNs) coated with a pH-sensitive polymer into the contact lens. The compositionally optimized pH-sensitive polymer has a lower critical solution temperature (LCST) at >45 °C at pH 7.4, whereas its LCST decreases to <35 °C under acidic conditions (pH ∼ 6.5). Consequently, the MSN-incorporated contact lens sustainably releases the loaded drugs only in the acidic state at 35 °C, which corresponds to lens-wear conditions, through the MSN pores that open because of the shrinkage of polymer chains. Conversely, negligible drug leakage is observed from the contact lens under low-temperature or neutral-pH conditions corresponding to packaging and transportation. Furthermore, compared with the plain contact lens, the pH-sensitive contact lens exhibits good biocompatibility and unchanged bulk characteristics, such as optical (transmittance in the visible-light region), mechanical (elastic modulus and tensile strength), and physical (surface roughness, oxygen permeability, and water content) properties. These findings suggest that the pH-sensitive contact lens can be potentially applied in ocular disease treatment.


Subject(s)
Contact Lenses , Nanoparticles , Drug Liberation , Nanoparticles/chemistry , Polymers , Hydrogen-Ion Concentration
2.
Nanomaterials (Basel) ; 13(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37177095

ABSTRACT

Antireflection coatings (ARCs) with an indium thin oxide (ITO) layer on silicon heterojunction solar cells (SHJ) have garnered significant attention, which is due to their potential for increasing current density (Jsc) and enhancing reliability. We propose an additional tungsten trioxide (WO3) layer on the ITO/Si structure in this paper in order to raise the Jsc and demonstrate the influence on the SHJ solar cell. First, we simulate the Jsc characteristics for the proposed WO3/ITO/Si structure in order to analyze Jsc depending on the thickness of WO3 using an OPAL 2 simulator. As a result, the OPAL 2 simulation shows an increase in Jsc of 0.65 mA/cm2 after the 19 nm WO3 deposition on ITO with a doping concentration of 6.1 × 1020/cm2. We then fabricate the proposed samples and observe an improved efficiency of 0.5% with an increased Jsc of 0.75 mA/cm2 when using a 20 nm thick WO3 layer on the SHJ solar cell. The results indicate that the WO3 layer can be a candidate to improve the efficiency of SHJ solar cells with a low fabrication cost.

3.
Environ Pollut ; 323: 121232, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36775135

ABSTRACT

PM10-associated potential toxic elements (PTEs) can enter the respiratory system and cause health problems. In the current study, the health risk indices caused by PM10 inhalation by adults, children, and infants in 158 European cities between 2013 and 2019 were studied to determine if Europeans were adversely affected by carcinogenic and non-carcinogenic factors or not. The Mann-Kendall trend test examined PM10's increasing or decreasing trend. Random Forest analysis was also used to analyse meteorological factors affecting PM10 in Europe. Hazard quotient and cancer risk were estimated using PM10-associated PTEs. Our results showed a decline in continental PM10 concentrations. The correlation between PM10 concentrations and temperature (-0.40), PBLH (-0.39), and precipitation were statistically strong (-0.21). The estimated Pearson correlation coefficients showed a statistically strong positive correlation between As & Pb, As & Cd, and Cd & Pb during 2013-2019, indicating a similar origin. PTEs with hazard quotients below one, regardless of subpopulation type, posed no noncancerous risk to Europeans. The hazard quotient values positively correlated with time, possibly due to elevated PTE levels. In our study on carcinogen pollution in Europe between 2013 and 2019, we found unacceptable levels of As, Cd, Ni, and Pb among adults, children, and infants. Carcinogenic risk rates were highest for children, followed by infants, adult women, and adult men. Therefore, besides monitoring and mitigating PM concentrations, effective control of PM sources is also needed.


Subject(s)
Air Pollutants , Metals, Heavy , Child , Adult , Infant , Male , Humans , Female , Particulate Matter/analysis , Air Pollutants/analysis , Environmental Monitoring/methods , Cadmium/analysis , Lead/analysis , Risk Assessment/methods , Carcinogens/analysis , Carcinogenesis , Metals, Heavy/analysis
4.
Environ Sci Pollut Res Int ; 29(5): 6491-6510, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34453678

ABSTRACT

Air pollution, particularly in urban areas, puts human health in danger and has adverse impacts on the built environment. It can accelerate the natural corrosion rate of cultural heritages and monuments, leading to premature aging and lowering their aesthetic value. Globally, at the beginning of 2020, to tackle the spread of novel COVID-19, the lockdown was enforced in the most hard-hit countries. Therefore, this study assesses, as a first time, the plausible benefits of traffic and urban mobility reductions on the natural process of deterioration of materials during COVID-19 lockdown in twenty-four major cities on five continents. The potential risk is estimated based on exceeding the tolerable degradation limits for each material. The notable impact of COVID-19 mobility restrictions on air quality was evidenced in 2020 compared to 2019. The introduced mobility restrictions in 2020 could decrease the surface recession rate of materials. Extremely randomized trees analysis showed that PM10 was the main influencing factor for corrosion of portland, copper, cast bronze, and carbon steel with a relative importance of 0.60, 0.32, 0.90, and 0.64, respectively, while SO2 and HNO3 were mainly responsible for corrosion of sandstone and zinc with a relative importance of 0.60 and 0.40, respectively. The globally adverse governed meteorological conditions in 2020 could not positively influence the movement restrictions around the world in air quality improvements. Our findings can highlight the need for additional policies and measures for reducing ambient pollution in cities and the proximity of sensitive cultural heritage to avoid further damage.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/prevention & control , Cities , Communicable Disease Control , Corrosion , Environmental Monitoring , Humans , Particulate Matter/analysis , SARS-CoV-2
5.
Nanomaterials (Basel) ; 11(9)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34578668

ABSTRACT

Self-sensing concrete (SSC) has been vastly studied for its possibility to provide a cost-effective solution for structural health monitoring of concrete structures, rendering it very attractive in real-life applications. In this review paper, comprehensive information about the components of self-sensing concrete, dispersion methods and mix design, as well as the recent progress in the field of self-sensing concrete, has been provided. The information and recent research findings about self-sensing materials for smart composites, their properties, measurement of self-sensing signal and the behavior of self-sensing concrete under different loading conditions are included. Factors influencing the electrical resistance of self-sensitive concrete such as dry-wet cycle, ice formation and freeze thaw cycle and current frequency, etc., which were not covered by previous review papers on self-sensing concrete, are discussed in detail. Finally, major emphasis is placed on the application of self-sensing technology in existing and new structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...