Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3466, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658539

ABSTRACT

Thermal losses in photoelectric devices limit their energy conversion efficiency, and cyclic input of energy coupled with pyroelectricity can overcome this limit. Here, incorporating a pyroelectric absorber into a photovoltaic heterostructure device enables efficient electricity generation by leveraging spontaneous polarization based on pulsed light-induced thermal changes. The proposed pyroelectric-photovoltaic device outperforms traditional photovoltaic devices by 2.5 times due to the long-range electric field that occurs under pulse illumination. Optimization of parameters such as pulse frequency, scan speed, and illumination wavelength enhances power harvesting, as demonstrated by a power conversion efficiency of 11.9% and an incident-photon-to-current conversion efficiency of 200% under optimized conditions. This breakthrough enables reconfigurable electrostatic devices and presents an opportunity to accelerate technology that surpasses conventional limits in energy generation.

2.
Adv Sci (Weinh) ; 11(7): e2306408, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38083978

ABSTRACT

Omnidirectional photosensing is crucial in optoelectronic devices, enabling a wide field of view (wFoV) and leveraging potential applications for the Internet of Things in sensors, light fidelity, and photocommunication. The wFoV helps overcome the limitations of line-of-sight communication, and transparent photodetection becomes highly desirable as it enables the capture of optical information from various angles. Therefore, developing a photoelectric device with a 360° wFoV, ultra sensitivity to photons, power generation, and transparency is of utmost importance. This study utilizes a heterojunction of van der Waals SnS with Ga2 O3 to fabricate a transparent photovoltaic (TPV) device showing a 360° wFoV with bifacial onsite power production. SnS/Ga2 O3 heterojunction preparation consists of magnetron sputtering and is free from nanopatterning/nanostructuring to achieve the desired wFoV window device. The device exhibits a high average visible transmittance of 56%, generates identical power from bifacial illumination, and broadband fast photoresponse. Careful analysis of the device shows an ultra-sensitive photoinduced defect-modulated heterojunction and photocapacitance, revealed by the impedance spectroscopy, suggesting photon-flux driven charge diffusion. Leveraging the wFoV operation, the TPV embedded visual and speech photocommunication prototype demonstrated, aiming to help visually and auditory impaired individuals, promising an environmental-friendly sustainable future.

3.
RSC Adv ; 13(30): 20486-20494, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37435370

ABSTRACT

The pressure-driven liquid flow controller is one of the key components in diverse applications including microfluidic systems, biomedical drug injection devices, and pressurized water supply systems. Electric feedback loop based flow controllers are fine-tunable but expensive and complex. The conventional safety valves based on spring force are simple and low cost, but their diverse application is limited due to their fixed pressure range, size, and shape. Herein, we propose a simple and controllable liquid-flowing system combining a closed liquid reservoir and an oil-gated isoporous membrane (OGIM). The ultra-thin and flexible OGIM acts as an immediately responsive and precisely controlled gas valve to maintain internal pneumatic pressure as designed to induce constant liquid flow. The oil filling apertures act as a gate for gas flow depending on the applied pressure and the threshold (gating) pressure of the gate is determined by the surface tension of the oil and the gate diameter. It is confirmed that the gating pressure is precisely controlled by varying the gate diameter, which agrees with the theoretically estimated pressures. Based on stably maintained pressure due to the function of OGIM, the constant liquid flow rate is achieved even with the high gas flow rate.

4.
Adv Sci (Weinh) ; 10(26): e2303895, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37435914

ABSTRACT

Invisible power generation by natural and artificial light enables sustainability by onsite-power deployment, lower cost, and minimal burden on the built environment. However, dark, opaque photovoltaics limit light utilization in a transparent way. Herein, it is proposed that the active energy window (AEW) invisibly features power production, providing higher freedom for onsite power generators in window objects without limiting human vision. The AEW has a transparent photovoltaic (TPV) for onsite power and a transparent heater (TH) to remove the effects of shadows from snow and recover the power lost. Moreover, a heating function is applied to remove the effects of weathering related to snow. The proposed prototype integrates a TPV-TH, offering ultraviolet (UV)-blocking, daylighting, thermal comfort, and onsite power with a power conversion efficiency of 3% (AM1.5G). Field-induced transparent electrodes are applied to the TPV-TH and designed considering the AEW. Owing to these electrodes, the AEW ensure a wide field-of-view without optical dead zones, ensuring see-through vision. The first TPV-TH integration is performed into a 2 cm2 -window that generates onsite power of 6 mW and has an average visible transmittance of ≈39%. It is believed that light can be utilized with comfort through the AEW in self-sustainable buildings and vehicles.

5.
Small ; 19(35): e2301702, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37096932

ABSTRACT

Can photodetectors be transparent and operate in self-powered mode? Is it possible to achieve invisible electronics, independent of the external power supply system, for on-site applications? Here, a ZnO/NiO heterojunction-based high-functional transparent ultraviolet (UV) photodetector operating in the self-powered photovoltaic mode with outstanding responsivity and detectivity values of 6.9 A W-1 and 8.0 × 1012 Jones, respectively, is reported. The highest IUV /Idark value of 8.9 × 104 is attained at a wavelength of 385 nm, together with a very small dark current value of 9.15 × 10-12 A. A large-scale sputtering method is adopted to deposit the heterostructure of n-ZnO and p-NiO sequentially. This deposition instinctively forms an abrupt junction, resulting in a high-quality heterojunction device. Moreover, developing a ZnO/NiO-heterojunction-based 4 × 5 matrix array with an output photovoltage of 4.5 V is preferred for integrating photodetectors into sensing and imaging systems. This transparent UV photodetector exhibits the fastest photo-response time (83 ns) reported for array configurations, which is achieved using an exciton-induced photovoltage based on a neutral donor-bound exciton. Overall, this study provides a simple method for achieving a high-performance large-scale transparent UV photodetector with a self-powered array configuration.

6.
ACS Appl Mater Interfaces ; 14(1): 706-716, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34962758

ABSTRACT

If we can transparently produce energy, we may apply invisible power generators to residential architectures to supply energy without losing visibility. Transparent photovoltaic cells (TPVs) are a transparent solar technology that transmits visible light while absorbing the invisible short wavelengths, such as ultraviolet. Installing TPVs in buildings provides an on-site energy supply platform as a window-embedded power generator or color-matched solar cell installation on a building surface. The record-high power generation (10.82 mW) and photocurrent value (68.25 mA) were achieved from large-scale TPVs (25 cm2). The metal oxide heterojunction is the fundamental TPV structure. The high-performance TPVs were achieved by adopting a thin Si film between ZnO and NiO as a functional light-absorbing layer. Based on the large energy band gap of metal oxides, TPVs have a clear transmittance (43%) and good color coordinates, which ensure degrees of freedom to adopt TPV power generators in various colored structures or transparent power windows. The bidirectional feature of TPVs is ultimately desirable to maximize light utilization. TPVs can generate electric power from sunlight during the day and can also work from artificial light sources at night. In the near future, humans will acquire electric power without losing visibility with on-site energy supply platforms.

7.
J Phys Chem Lett ; 12(51): 12426-12436, 2021 Dec 30.
Article in English | MEDLINE | ID: mdl-34939813

ABSTRACT

Inspired by the brain, future computation depends on creating a neuromorphic device that is energy-efficient for information processing and capable of sensing and learning. The current computation-chip platform is not capable of self-power and neuromorphic functionality; therefore, a need exists for a new platform that provides both. This Perspective illustrates potential transparent photovoltaics as a platform to achieve scalable, multimodal sensory, self-sustainable neural systems (e.g., visual cortex, nociception, and electronic skin). We present herein a strategy to harvest solar power using a transparent photovoltaic device that provides neuromorphic functionality to implement versatile, sustainable, integrative, and practical applications. The proposed solid-inorganic heterostructure platform is indispensable for achieving a variety of biosensors, sensory systems, neuromorphic computing, and machine learning.


Subject(s)
Biosensing Techniques , Electric Power Supplies , Machine Learning , Neural Networks, Computer , Humans
8.
Sci Rep ; 11(1): 15524, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34330966

ABSTRACT

We developed and designed a bifacial four-terminal perovskite (PVK)/crystalline silicon (c-Si) heterojunction (HJ) tandem solar cell configuration albedo reflection in which the c-Si HJ bottom sub-cell absorbs the solar spectrum from both the front and rear sides (reflected light from the background such as green grass, white sand, red brick, roofing shingle, snow, etc.). Using the albedo reflection and the subsequent short-circuit current density, the conversion efficiency of the PVK-filtered c-Si HJ bottom sub-cell was improved regardless of the PVK top sub-cell properties. This approach achieved a conversion efficiency exceeding 30%, which is higher than those of both the top and bottom sub-cells. Notably, this efficiency is also greater than the Schockley-Quiesser limit of the c-Si solar cell (approximately 29.43%). The proposed approach has the potential to lower industrial solar cell production costs in the near future.

9.
Nanoscale ; 13(10): 5243-5250, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33650601

ABSTRACT

Bio-inspired electronic devices have significant potential for use in memory devices of the future, including in the context of neuromorphic computing and architecture. This study proposes a transparent heterojunction device for the artificial human visual cortex. Owing to their high transparency, such devices directly react to incoming light to mimic neurological and biological processes in the nervous system. Metal-oxide materials are applied to form a transparent heterojunction (n-type ZnO/p-type NiO) in the proposed device that also provides the photovoltaic function to realize the optic nerve system. The device also exhibits nociceptive features. Its transparent photovoltaic feature endows it with self-powered operation that ensures long-term reliability without needing to replace the power system. This self-powered and highly transparent visual electronic device can provide a route for sustainable applications of neuromorphic computing, including artificial eyes.

10.
ACS Appl Mater Interfaces ; 13(8): 10181-10190, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33617239

ABSTRACT

Solar-driven hydrogen generation is one of the most promising approaches for building a sustainable energy system. Photovoltaic-assisted photoanodes can help to reduce the overpotential of water splitting in photoelectrochemical (PEC) cells. Transparent photoanodes can improve light-conversion efficiency by absorbing high-energy photons while transmitting lower energy photons to the photocathode for hydrogen production. In this work, transparent photoanodes were implemented by forming metal-oxide junctions of NiO/TiO2 heterostructures for creating the photovoltaic effect. The photovoltaic-induced transparent photoelectrode (PTPE) provides the photovoltage (0.7 V), which efficiently reduces the onset potential voltage by -0.38 V versus the reversible hydrogen electrode (RHE), as compared to 0.17 V versus RHE for a single-TiO2 photoanode. The PEC cell has a high photocurrent of 1.68 mA at 1.23 V with respect to the RHE. The chemical endurance of metal-oxides maintains the stability of the PTPE for over 100 h in an alkaline electrolyte of 0.1 M KOH. The results of this study reveal that combining multiple PTPE cells to create a stacked photoanode enhances the photocurrent roughly in proportion to the number of PTPE cells. This design scheme for optimizing the light-conversion efficiency in a PTPE-photoanode system is promising for creating robust systems for on-site energy producers.

11.
ACS Appl Mater Interfaces ; 11(39): 35845-35852, 2019 Oct 02.
Article in English | MEDLINE | ID: mdl-31496232

ABSTRACT

Despite high potential, the promise of 2D materials has not been realized practically because of limits of tiny grown size and difficult manipulation of the active spot. The utilization of 2D layers is the ultimate approach, which should be supported by large-scale production. In this very first report, we demonstrate the wafer-scale production of ReS2 using the conventional sputtering method. The controllability of ReS2 geometry has been investigated to form typical thin films or vertically aligned layers that are further applied for field emission. The vertically aligned ReS2 layers exhibit ultralow turn-on electric field (0.6 V µm-1) with the current density (0.6 mA cm-2) and significantly low threshold electric field (0.8 V µm-1), respectively, along with outstanding emission stability. The results are attributed to weakly coupled ReS2 layers and the high geometrical field enhancement factor (∼1.08 × 105). Further, Kelvin probe force microscopy measurements confirm that lowering the work function is not solely responsible to achieve the ultralow operative field. Moreover, finite element simulation suggests that not only the length, width, and separation of the nanostructures but also the local slope plays an important role in suppressing screening effects.

12.
Nanoscale ; 11(33): 15596-15604, 2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31403638

ABSTRACT

The fundamental unit of the nervous system is a synapse, which is involved in transmitting information between neurons as well as learning, memory, and forgetting processes. Two-terminal memristors can fulfil most of these requirements; however, their poor dynamic changes in resistance to input electric stimuli remain an obstacle, which must be improved for accurate and quick information processing. Herein, we demonstrate the synaptic properties of ZnO-based memristors, which were significantly enhanced (∼340 times) by geometrical modulation due to the localized electric field enhancement. Specifically, by inserting Ag-nanowires and Ag-dots into the ZnO/Si interface, the resistive switching could be controlled from a digital to analog mode. A finite element simulation revealed that the presence of Ag could enhance the localized electric field, which in turn improved the migration of ionic species. Further, the device showed a variety of comprehensive synaptic functions, for instance, paired-pulse facilitation and transformation from short-term plasticity to long-term plasticity, including the Pavlovian associative learning process in a human brain. Our study presents a novel architecture to enhance the synaptic sensitivity, and its uses in practical applications, including the artificial learning algorithm.


Subject(s)
Algorithms , Electricity , Nanowires/chemistry , Silicon/chemistry , Silver/chemistry , Synapses/physiology , Zinc Oxide/chemistry
13.
Adv Mater ; 31(39): e1903095, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31410882

ABSTRACT

Mimicking brain-like functionality with an electronic device is an essential step toward the design of future technologies including artificial visual and memory applications. Here, a proof-of-concept all-oxide-based (NiO/TiO2 ) highly transparent (54%) heterostructure is proposed and demonstrated, which mimics the primitive functions of the visual cortex. Specifically, orientation selectivity and spatiotemporal processing similar to that of the visual cortex are demonstrated using direct optical stimuli under the self-biased condition due to photovoltaic effect, illustrating an energy-efficient approach for neuromorphic computing. The photocurrent of the device can be modulated from zero to 80 µA by simply rotating the slit by 90°. The device shows fast rise and fall times of 3 and 6 ms, respectively. Based on Kelvin probe force measurements, the observed results are attributed to a lateral photovoltaic effect. This highly transparent, self-biased, photonic triggered device paves the way for the advancement of energy-efficient neuromorphic computation.


Subject(s)
Biomimetics/instrumentation , Electrical Equipment and Supplies , Optical Phenomena , Photons , Visual Cortex/physiology , Nanowires/chemistry , Nickel/chemistry , Silver/chemistry , Titanium/chemistry
14.
Data Brief ; 25: 104095, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31297414

ABSTRACT

In this data article, the properties of all transparent metal oxide of ZnO/NiO heterostructure "Transparent all-oxide photovoltaics and broadband high-speed energy-efficient optoelectronics" [1] are presented by characteristics of ZnO and NiO layers, open circuit voltage decay (OCVD), broadband light with intensity dependent current-voltage plots. The device performances under the effect of various optical excitation of intermediated-band, bound excitonic, free-excitonic and band-to-band are presented. The ZnO/NiO heterostructure direction grown on ITO/glass substrate by large area sputtering method [1] was characterized by UV-visible plots and scanning electron microscope (SEM). Carrier lifetime using OCVD of ZnO/NiO devices with carbon paint metal contact is presented. Prolonged open circuit voltage plots under UV light intensity are shown for stability and repeatability studies. I-V characteristics of ZnO/NiO heterostructure under the light wavelength from 623 nm to 365 nm are presented for energy efficient broadband optoelectronics.

15.
Adv Mater ; 31(19): e1900021, 2019 May.
Article in English | MEDLINE | ID: mdl-30924201

ABSTRACT

A nociceptor is an essential element in the human body, alerting us to potential damage from extremes in temperature, pressure, etc. Realizing nociceptive behavior in an electronics device remains a central issue for researchers, designing neuromorphic devices. This study proposes and demonstrates an all-oxide-based highly transparent ultraviolet-triggered artificial nociceptor, which responds in a very similar way to the human eye. The device shows a high transmittance (>65%) and very low absorbance in the visible region. The current-voltage characteristics show loop opening, which is attributed to the charge trapping/detrapping. Further, the ultraviolet-stimuli-induced versatile criteria of a nociceptor such as a threshold, relaxation, allodynia, and hyperalgesia are demonstrated under self-biased condition, providing an energy-efficient approach for the neuromorphic device operation. The reported optically controlled features open a new avenue for the development of transparent optoelectronic nociceptors, artificial eyes, and memory storage applications.

16.
Small ; 15(10): e1804346, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30721568

ABSTRACT

ZnO is a potential candidate for photodetection utilizing the pyroelectric effect. Here, a self-biased and translucent photodetector with the configuration of Cu4 O3 /ZnO/FTO/Glass is designed and fabricated. In addition, the pyroelectric effect is effectively harvested using indium tin oxide (ITO), silver nanowires (AgNWs), and a blend of AgNWs-coated ITO as the transparent selective contact electrode. The improved rise times are observed from 1400 µs (bare condition; without the selective electrode) to 69, 60, 7 µs, and fall times from 720 µs (bare condition) to 80, 70, 10 µs for corresponding ITO, AgNWs, and AgNWs-coated ITO contact electrodes, respectively. Similarly, the responsivity and detectivity are enhanced by about 4.39 × 107 and 5.27 × 105 %, respectively. An energy band diagram is proposed to explain the underlying working mechanism based on the workfunction of the ITO (4.7 eV) and AgNWs (4.57 eV) as measured by Kelvin probe force microscopy, which confirms the formation of type-II band alignment resulting in the efficient transport of photogenerated charge carriers. The functional use of the transparent selective contact electrode can effectively harness the pyro-phototronic effect for next-generation transparent and flexible optoelectronic applications.

17.
Small ; 14(52): e1804016, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30457700

ABSTRACT

In this work, a strain modulated highly transparent and flexible ZnO/Ag-nanowires/polyethylene terephthalate optoelectronic device is developed. By utilizing the applied external strain-induced piezophototronic effects of a ZnO thin film, a UV-generated photocurrent is tuned in a wide range starting from 0.01 to 85.07 µA and it is presented in a comprehensive map. Particularly, the performance of the device is effectively enhanced 7733 times by compressive strain, as compared to its dark current in a strain-free state. The observed results are explained quantitatively based on the modulation of oxygen desorption/absorption on the ZnO surface under the influence of applied strains. The presented simple optoelectronic device can be easily integrated into existing planar structures, with potential applications in highly transparent smart windows, wearable electronics, smartphones, security communication, and so on.

18.
Data Brief ; 20: 1256-1262, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30238036

ABSTRACT

In this data article, the properties of WS2/ZnO type-I heterostructure which corresponds to the research article "Vertically trigonal WS2 layer embedded heterostructure for enhanced ultraviolet-visible photodetector" (Nguyen et al., 2018) are presented by characteristics of WS2 layer, diode properties, and thickness dependent photoresponses. The device performances under the effect of rapid thermal processing (RTP) is presented. The WS2 platelets grown by large area sputtering method (Nguyen et al., 2018) was characterized in term of morphology and chemical elements distribution by using transmission electron microscope (TEM), energy dispersive spectroscopy (EDS) and X-Ray photoelectron spectroscopy (XPS). Diode characterization of WS2/ZnO like rectifying ratio, ideal factor and barrier height are presented. The variation of photocurrent of ITO/WS2/ZnO/FTO/glass photodetector, its dependence on the WS2 thickness and influence of post- thermal treatment are presented.

19.
ACS Appl Mater Interfaces ; 10(40): 34370-34376, 2018 Oct 10.
Article in English | MEDLINE | ID: mdl-30207159

ABSTRACT

The neuromorphic system processes enormous information even with very low energy consumption, which practically can be achieved with photonic artificial synapse. Herein, a photonic artificial synapse is demonstrated based on an all-oxide highly transparent device. The device consists of conformally grown In2O3/ZnO thin films on a fluorine-doped tin oxide/glass substrate. The device showed a loop opening in current-voltage characteristics, which was attributed to charge trapping/detrapping. Ultraviolet illumination-induced versatile features such as short-term/long-term plasticity and paired-pulse facilitation were truly confirmed. Further, photonic potentiation and electrical habituation were implemented. This study paves the way to develop a device in which current can be modulated under the action of optical stimuli, serving as a fundamental step toward the realization of low-cost synaptic behavior.

20.
Beilstein J Nanotechnol ; 9: 2432-2442, 2018.
Article in English | MEDLINE | ID: mdl-30254838

ABSTRACT

Co3O4 has been widely studied as a catalyst when coupled with a photoactive material during hydrogen production using water splitting. Here, we demonstrate a photoactive spinel Co3O4 electrode grown by the Kirkendall diffusion thermal oxidation of Co nanoparticles. The thickness-dependent structural, physical, optical, and electrical properties of Co3O4 samples are comprehensively studied. Our analysis shows that two bandgaps of 1.5 eV and 2.1 eV coexist with p-type conductivity in porous and semitransparent Co3O4 samples, which exhibit light-induced photocurrent in photoelectrochemical cells (PEC) containing the alkaline electrolyte. The thickness-dependent properties of Co3O4 related to its use as a working electrode in PEC cells are extensively studied and show potential for the application in water oxidation and reduction processes. To demonstrate the stability, an alkaline cell was composed for the water splitting system by using two Co3O4 photoelectrodes. The oxygen gas generation rate was obtained to be 7.17 mL·h-1 cm-1. Meanwhile, hydrogen gas generation rate was almost twice of 14.35 mL·h-1·cm-1 indicating the stoichiometric ratio of 1:2. We propose that a semitransparent Co3O4 photoactive electrode is a prospective candidate for use in PEC cells via heterojunctions for hydrogen generation.

SELECTION OF CITATIONS
SEARCH DETAIL
...