Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ACS Biomater Sci Eng ; 3(8): 1499-1509, 2017 Aug 14.
Article in English | MEDLINE | ID: mdl-33429637

ABSTRACT

Direct stem cell encapsulation and cardiac differentiation within supporting biomaterial scaffolds are critical for reproducible and scalable production of the functional human tissues needed in regenerative medicine and drug-testing applications. Producing cardiac tissues directly from pluripotent stem cells rather than assembling tissues using pre-differentiated cells can eliminate multiple cell-handling steps that otherwise limit the potential for process automation and production scale-up. Here we asked whether our process for forming 3D developing human engineered cardiac tissues using poly(ethylene glycol)-fibrinogen hydrogels can be extended to widely used and printable gelatin methacryloyl (GelMA) hydrogels. We demonstrate that low-density GelMA hydrogels can be formed rapidly using visible light (<1 min) and successfully employed to encapsulate human induced pluripotent stem cells while maintaining high cell viability. Resulting constructs had an initial stiffness of approximately 220 Pa, supported tissue growth and dynamic remodeling, and facilitated high-efficiency cardiac differentiation (>70%) to produce spontaneously contracting GelMA human engineered cardiac tissues (GEhECTs). GEhECTs initiated spontaneous contractions on day 8 of differentiation, with synchronicity, frequency, and velocity of contraction increasing over time, and displayed developmentally appropriate temporal changes in cardiac gene expression. GEhECT-dissociated cardiomyocytes displayed well-defined and aligned sarcomeres spaced at 1.85 ± 0.1 µm and responded appropriately to drug treatments, including the ß-adrenergic agonist isoproterenol and antagonist propranolol, as well as to outside pacing up to 3.0 Hz. Overall results demonstrate that GelMA is a suitable biomaterial for the production of developing cardiac tissues and has the potential to be employed in scale-up production and bioprinting of GEhECTs.

2.
Biomaterials ; 83: 383-95, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26826618

ABSTRACT

Human engineered heart tissues have potential to revolutionize cardiac development research, drug-testing, and treatment of heart disease; however, implementation is limited by the need to use pre-differentiated cardiomyocytes (CMs). Here we show that by providing a 3D poly(ethylene glycol)-fibrinogen hydrogel microenvironment, we can directly differentiate human pluripotent stem cells (hPSCs) into contracting heart tissues. Our straight-forward, ontomimetic approach, imitating the process of development, requires only a single cell-handling step, provides reproducible results for a range of tested geometries and size scales, and overcomes inherent limitations in cell maintenance and maturation, while achieving high yields of CMs with developmentally appropriate temporal changes in gene expression. We demonstrate that hPSCs encapsulated within this biomimetic 3D hydrogel microenvironment develop into functional cardiac tissues composed of self-aligned CMs with evidence of ultrastructural maturation, mimicking heart development, and enabling investigation of disease mechanisms and screening of compounds on developing human heart tissue.


Subject(s)
Cell Differentiation/drug effects , Heart/drug effects , Heart/growth & development , Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology , Pluripotent Stem Cells/cytology , Tissue Engineering/methods , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Immobilized/cytology , Gene Expression Regulation/drug effects , Humans , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/ultrastructure , Pluripotent Stem Cells/drug effects , Polyethylene Glycols/chemistry
3.
Anal Methods ; 7(17): 7358-7362, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26366207

ABSTRACT

Effective aptamer-based protein assays require coupling to a quantitative reporter of aptamer-protein binding. Typically, this involves a direct optical or electrochemical readout of DNA hybridization or an amplification step coupled to the readout. However, method development is often hampered by the multiplicity of aptamer-target binding mechanisms, which can interfere with the hybridization step. As a simpler and more generalizable readout of aptamer-protein binding, we report that thermofluorimetric analysis (TFA) can be used to quantitatively assay protein levels. Sub-nanomolar detection (0.74 nM) of platelet-derived growth factor (PDGF) with its corresponding aptamer is shown as a test case. In the presence of various DNA intercalating dyes, protein-bound aptamers exhibit a change in fluorescence intensity compared to the intercalated, unbound aptamer. This allows thermal resolution of bound and unbound aptamers using fluorescence melting analysis (-dF/dT curves). Remarkably, the homogeneous optical method allows subtraction of autofluorescence in human serum, giving PDGF detection limits of 1.8 and 10.7 nM in serum diluted 1:7 and 1:3, respectively. We have thus demonstrated that bound and unbound aptamers can be thermally resolved in a homogeneous format using a simple qPCR instrument-even in human serum. The simplicity of this approach provides an important step toward a robust, generalizable readout of aptamer-protein binding.

4.
Anal Chem ; 87(19): 9576-9, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26372070

ABSTRACT

Homogenous protein assays, despite the potential for mix-and-read workflows, have eluded widespread acceptance due to interferences in biological matrices and limited multiplexability. Here, we employ standard qPCR instrumentation for thermofluorimetric analysis of bivalent probe (TFAB) assemblies, allowing protein levels to be quantitatively translated into multiplexable DNA melting transitions within 30 min. As protein-bound bivalent probes are thermodynamically more stable than unbound probes, differential thermal analysis can remove background analytically, without physical separation. Using either antibody-oligonucleotides or aptamers as probes, TFAB is validated for protein quantification in buffer, human serum, and human plasma and for assaying hormone secretions from endocrine cells. The direct optical method exhibits superior scalability, allowing detection of only 1 amol of protein in microfluidic channels of 100 pL volume. Overall, we demonstrate TFAB as a robust and generalizable homogeneous protein assay with superior performance in biological matrices.


Subject(s)
DNA/chemistry , Molecular Probes/chemistry , Proteins/analysis , Transition Temperature , Endocrine Cells/cytology , Fluorometry , Humans , Microfluidic Analytical Techniques , Nucleic Acid Denaturation , Polymerase Chain Reaction , Proteins/genetics
5.
J Am Chem Soc ; 136(23): 8467-74, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24827871

ABSTRACT

Rapid and specific quantitation of a variety of proteins over a wide concentration range is highly desirable for biosensing at the point-of-care, in clinical laboratories, and in research settings. Our recently developed electrochemical proximity assay (ECPA) is a target-flexible, DNA-directed, direct-readout protein quantitation method with detection limits in the low femtomolar range, making it particularly amenable to point-of-care detection. However, consistent quantitation in more complex matrices is required at the point-of-care, and improvements in measurement speed are needed for clinical and research settings. Here, we address these concerns with a reusable ECPA, where a gentle regeneration of the surface DNA monolayer (used to capture the proximity complex) is achieved enzymatically through a novel combination of molecular biology and electrochemistry. Strategically placed uracils in the DNA sequence trigger selective cleavage of the backbone, releasing the assembled proximity complex. This allows repeated protein quantitation by square-wave voltammetry (SWV)-as quickly as 3 min between runs. The process can be repeated up to 19 times on a single electrode without loss of assay sensitivity, and currents are shown to be highly repeatable with similar calibrations using seven different electrodes. The utility of reusable ECPA is demonstrated through two important applications in complex matrices: (1) direct, quantitative monitoring of hormone secretion in real time from as few as five murine pancreatic islets and (2) standard addition experiments in unspiked serum for direct quantitation of insulin at clinically relevant levels. Results from both applications distinguish ECPA as an exceptional tool in protein quantitation.


Subject(s)
Biosensing Techniques/methods , Carcinoembryonic Antigen/analysis , Electrochemical Techniques/methods , Immunoassay/methods , Antibodies, Monoclonal/chemistry , Base Sequence , Carcinoembryonic Antigen/blood , Catalysis , DNA Probes/chemistry , DNA, Catalytic/chemistry , Humans , Limit of Detection , Magnesium/chemistry , Methylene Blue/chemistry
6.
Anal Chem ; 85(21): 10556-64, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24070333

ABSTRACT

Currently, one of the most prominent methods used to impart biocompatibility to aqueous-in-oil droplets is to synthesize a triblock copolymer surfactant composed of perfluoropolyether and polyether blocks. The resulting surfactants (EA surfactant, KryJeffa, etc.) allow generation of highly biocompatible droplet surfaces while maintaining the heat stability of the starting material. However, production of these surfactants requires expertise in synthetic organic chemistry, creating a barrier to widespread adoption in the field. Herein, we describe a simple alternative to synthetic modification of surfactants to impart biocompatibility. We have observed that aqueous-in-oil droplet surfaces can be made biocompatible and heat stable by merely exploiting binding interactions between polyetherdiamine additives in the aqueous phase and carboxylated perfluorocarbon surfactants in the oil phase. Droplets formed under these conditions are shown to possess biocompatible surfaces capable of supporting picoliter-scale protein assays, droplet polymerase chain reaction (PCR), and droplet DNA amplification with isothermal recombinase polymerase amplification (RPA). Droplets formed with polyetherdiamine aqueous additives are stable enough to withstand temperature cycling during PCR (30-40 cycles at 60-94 °C) while maintaining biocompatibility, and the reaction efficiency of RPA is shown to be similar to that with a covalently modified surfactant (KryJeffa). The binding interaction was confirmed with various methods, including FT-IR spectroscopy, NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and fluorescence microscopy. Overall, our results suggest that, by simply introducing a commercially-available, polyetherdiamine additive (Jeffamine ED-900) to the aqueous phase, researchers can avoid synthetic methods in generating biocompatible droplet surfaces capable of supporting DNA and protein analysis at the subnanoliter scale.


Subject(s)
Amines/chemistry , Biocompatible Materials , Fluorocarbons/chemistry , Oils , Surface-Active Agents/chemistry , Water , Chromatography, Liquid , Magnetic Resonance Spectroscopy , Mass Spectrometry , Polymerase Chain Reaction , Spectroscopy, Fourier Transform Infrared
7.
J Am Chem Soc ; 134(16): 7066-72, 2012 Apr 25.
Article in English | MEDLINE | ID: mdl-22452720

ABSTRACT

We have developed a separation-free, electrochemical assay format with direct readout that is amenable to highly sensitive and selective quantitation of a wide variety of target proteins. Our first generation of the electrochemical proximity assay (ECPA) is composed of two thrombin aptamers which form a cooperative complex only in the presence of target molecules, moving a methylene blue (MB)-conjugated oligonucleotide close to a gold electrode. Without washing steps, electrical current is increased in proportion to the concentration of a specific target protein. By employing a DNA-based experimental model with the aptamer system, we show that addition of a short DNA competitor can reduce background current of the MB peak to baseline levels. As such, the detection limit of aptamer-based ECPA for human thrombin was 50 pM via direct readout. The dual-probe nature of ECPA gave high selectivity and 93% recovery of signal from 2.5 nM thrombin in 2% bovine serum albumin (BSA). To greatly improve the flexibility of ECPA, we then proved the system functional with antibody-oligonucleotide conjugates as probes; the insulin detection limit was 128 fM with a dynamic range of over 4 orders of magnitude in concentration, again with high assay selectivity. ECPA thus allows separation-free, highly sensitive, and highly selective protein detection with a direct electrochemical readout. This method is extremely flexible, capable of detecting a wide variety of protein targets, and is amenable to point-of-care protein measurement, since any target with two aptamers or antibodies could be assayed via direct electrochemical readout.


Subject(s)
Electrochemical Techniques , Thrombin/analysis , Animals , Aptamers, Nucleotide/chemistry , Cattle , DNA/chemistry , Electrodes , Gold/chemistry , Humans , Serum Albumin, Bovine/chemistry , Thrombin/metabolism
8.
Bioanalysis ; 3(2): 227-39, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21250850

ABSTRACT

Isothermal DNA amplification is an alternative to PCR-based amplification for point-of-care diagnosis. Since the early 1990s, the approach has been refined into a simple, rapid and cost-effective tool by means of several distinct strategies. Input signals have been diversified from DNA to RNA, protein or small organic molecules by translating these signals into input DNA before amplification, thus allowing assays on various classes of biomolecules. In situ detection of single biomolecules has been achieved using an isothermal method, leveraging localized signal amplification in an intact specimen. A few pioneering studies to develop a homogenous isothermal protein assay have successfully translated structure-switching of a probe upon target binding into input DNA for isothermal amplification. In addition to the detection of specific targets, isothermal methods have made whole-genome amplification of single cells possible owing to the unbiased, linear nature of the amplification process as well as the large size of amplified products given by ϕ29 DNA polymerase. These applications have been devised with the four isothermal amplification strategies covered in this review: strand-displacement amplification, rolling circle amplification, helicase-dependent amplification and recombinase polymerase amplification.


Subject(s)
DNA/analysis , Nucleic Acid Amplification Techniques/methods , DNA Helicases/genetics , DNA Helicases/metabolism , DNA, Circular/biosynthesis , DNA, Circular/genetics , DNA-Directed DNA Polymerase/metabolism , Polymerase Chain Reaction/methods
9.
Anal Chem ; 82(16): 6976-82, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20704387

ABSTRACT

The proximity ligation assay (PLA) is one of the most sensitive and simple protein assays developed to date, yet a major limitation is the relatively narrow dynamic range compared to other assays such as enzyme-linked immunosorbent assays. In this work, the dynamic range of PLA was improved by 2 orders of magnitude and the sensitivity was improved by a factor of 1.57. To accomplish this, asymmetric DNA hybridization was used to reduce the probability of target-independent, background ligation. An experimental model of the aptamer-target-connector complex (apt(A)-T-apt(B)-C(20,PLA)) in PLA was developed to study the effects of asymmetry in aptamer-connector hybridization. Connector base pairing was varied from the PLA standard of 20 total bases (C(20)) to an asymmetric combination with 15 total bases (C(15)). The results of this model suggested that weakening the affinity of one side of the connector to one aptamer would significantly reduce target-independent ligation (background) without greatly affecting target-dependent ligation (signal). These predictions were confirmed using PLA with asymmetric connectors for detection of human thrombin. This novel, asymmetric PLA approach should impact any previously developed PLA method (using aptamers or antibodies) by reducing target-independent ligation events, thus generally improving the sensitivity and dynamic range of the assay.


Subject(s)
Aptamers, Nucleotide/chemistry , Nucleic Acid Hybridization/methods , Oligonucleotides/chemistry , Base Sequence , Humans , Models, Molecular , Thrombin/analysis
10.
Plant Cell Physiol ; 50(3): 463-79, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19147649

ABSTRACT

To gain insight into the evolution of xanthophyll synthesis in Arabidopsis thaliana, we analyzed two pairs of duplicated carotenoid hydroxylase enzymes in Arabidopsis thaliana: the cytochrome P450 enzymes CYP97A3 and CYP97C1, and non-heme di-iron enzymes, BCH1 and BCH2. Hydroxylated carotenes did not accumulate in a quadruple mutant for these four genes, demonstrating that they encode the full complement of carotenoid hydroxylases in A. thaliana. We were thus able to infer definitively the activity of each enzyme in vivo based on the phenotypes of selected double and triple mutant genotypes. The CYP97 and BCH gene pairs are primarily responsible for hydroxylation of alpha- and beta-carotenes, respectively, but exhibit some overlapping activities, most notably in hydroxylation of the beta-ring of alpha-carotene. Surprisingly, triple mutants containing only CYP97C1 or CYP97A3 activity produced 74 and 6% of the wild-type lutein level, indicating that CYP97C1 can efficiently hydroxylate both the beta- and epsilon-rings of alpha-carotene and that CYP97A3 also has low activity toward the epsilon-ring of alpha-carotene. The modes of functional divergence for the gene pairs appear distinct, with the CYP97 duplicates being strongly co-expressed but encoding enzymes with different in vivo substrates, while the BCH duplicates encode isozymes that show significant expression divergence in reproductive organs. By integrating the evolutionary history and substrate specificities of each extant enzyme with the phenotypic responses of various mutant genotypes to high light stress, we propose two likely scenarios for the evolution of alpha-xanthophyll biosynthesis in plants from ancestral organisms.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Evolution, Molecular , Mixed Function Oxygenases/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Carotenoids/biosynthesis , Gene Expression Regulation, Plant , Gene Knockout Techniques , Hydroxylation , Light , Lutein/biosynthesis , Mixed Function Oxygenases/genetics , Molecular Sequence Data , Mutation , Phylogeny , Sequence Alignment , Sequence Analysis, Protein , beta Carotene/biosynthesis
11.
Proc Natl Acad Sci U S A ; 103(9): 3474-9, 2006 Feb 28.
Article in English | MEDLINE | ID: mdl-16492736

ABSTRACT

Lutein, a dihydroxy derivative of alpha-carotene (beta,epsilon-carotene), is the most abundant carotenoid in photosynthetic plant tissues where it plays important roles in light-harvesting complex-II structure and function. The synthesis of lutein from lycopene requires at least four distinct enzymatic reactions: beta- and epsilon-ring cyclizations and hydroxylation of each ring at the C-3 position. Three carotenoid hydroxylases have already been identified in Arabidopsis, two nonheme diiron beta-ring monooxygenases (the B1 and B2 loci) that primarily catalyze hydroxylation of the beta-ring of beta,beta-carotenoids and one heme-containing monooxygenase (CYP97C1, the LUT1 locus) that catalyzes hydroxylation of the epsilon-ring of beta,epsilon-carotenoids. In this study, we demonstrate that Arabidopsis CYP97A3 (the LUT5 locus) encodes a fourth carotenoid hydroxylase with major in vivo activity toward the beta-ring of alpha-carotene (beta,epsilon-carotene) and minor activity on the beta-rings of beta-carotene (beta,beta-carotene). A cyp97a3-null allele, lut5-1, causes an accumulation of alpha-carotene at a level equivalent to beta-carotene in wild type, which is stably incorporated into photosystems, and a 35% reduction in beta-carotene-derived xanthophylls. That lut5-1 still produces 80% of wild-type lutein levels, indicating at least one of the other carotene hydroxylases, can partially compensate for the loss of CYP97A3 activity. From these data, we propose a model for the preferred pathway for lutein synthesis in plants: ring cyclizations to form alpha-carotene, beta-ring hydroxylation of alpha-carotene by CYP97A3 to produce zeinoxanthin, followed by epsilon-ring hydroxylation of zeinoxanthin by CYP97C1 to produce lutein.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Lutein/biosynthesis , Mixed Function Oxygenases/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Carotenoids/biosynthesis , Carotenoids/chemistry , Gene Expression Regulation, Plant/genetics , Genotype , Mixed Function Oxygenases/genetics , Molecular Sequence Data , Molecular Structure , Mutation/genetics , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism
12.
Plant J ; 38(5): 754-64, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15144377

ABSTRACT

A late-flowering mutant was isolated from rice T-DNA-tagging lines. T-DNA had been integrated into the K-box region of Oryza sativa MADS50 (OsMADS50), which shares 50.6% amino acid identity with the Arabidopsis MADS-box gene SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20). While overexpression of OsMADS50 caused extremely early flowering at the callus stage, OsMADS50 RNAi plants exhibited phenotypes of late flowering and an increase in the number of elongated internodes. This confirmed that the phenotypes observed in the knockout (KO) plants are because of the mutation in OsMADS50. RT-PCR analyses of the OsMADS50 KO and ubiquitin (ubi):OsMADS50 plants showed that OsMADS50 is an upstream regulator of OsMADS1, OsMADS14, OsMADS15, OsMADS18, and Hd (Heading date)3a, but works either parallel with or downstream of Hd1 and O. sativa GIGANTEA (OsGI). These results suggest that OsMADS50 is an important flowering activator that controls various floral regulators in rice.


Subject(s)
Flowers/genetics , MADS Domain Proteins/genetics , Plant Proteins/genetics , Base Sequence , DNA Primers , Gene Deletion , Oryza/genetics , Reverse Transcriptase Polymerase Chain Reaction
13.
Proc Natl Acad Sci U S A ; 101(7): 1910-5, 2004 Feb 17.
Article in English | MEDLINE | ID: mdl-14764899

ABSTRACT

Plant MADS-box genes form a large gene family for transcription factors and are involved in various aspects of developmental processes, including flower development. They are known to be subject to birth-and-death evolution, but the detailed features of this mode of evolution remain unclear. To have a deeper insight into the evolutionary pattern of this gene family, we enumerated all available functional and nonfunctional (pseudogene) MADS-box genes from the Arabidopsis and rice genomes. Plant MADS-box genes can be classified into types I and II genes on the basis of phylogenetic analysis. Conducting extensive homology search and phylogenetic analysis, we found 64 presumed functional and 37 nonfunctional type I genes and 43 presumed functional and 4 nonfunctional type II genes in Arabidopsis. We also found 24 presumed functional and 6 nonfunctional type I genes and 47 presumed functional and 1 nonfunctional type II genes in rice. Our phylogenetic analysis indicated there were at least about four to eight type I genes and approximately 15-20 type II genes in the most recent common ancestor of Arabidopsis and rice. It has also been suggested that type I genes have experienced a higher rate of birth-and-death evolution than type II genes in angiosperms. Furthermore, the higher rate of birth-and-death evolution in type I genes appeared partly due to a higher frequency of segmental gene duplication and weaker purifying selection in type I than in type II genes.


Subject(s)
Evolution, Molecular , Genes, Plant/genetics , MADS Domain Proteins/genetics , Magnoliopsida/genetics , Arabidopsis/genetics , Genome, Plant , Oryza/genetics , Phylogeny , Plant Proteins/genetics , Protein Structure, Tertiary , Pseudogenes/genetics
14.
Proc Natl Acad Sci U S A ; 101(1): 402-7, 2004 Jan 06.
Article in English | MEDLINE | ID: mdl-14709673

ABSTRACT

Lutein, a dihydroxy xanthophyll, is the most abundant carotenoid in plant photosynthetic tissues and plays crucial structural and functional roles in the light-harvesting complexes. Carotenoid beta-and epsilon-hydroxylases catalyze the formation of lutein from alpha-carotene (beta,epsilon-carotene). In contrast to the well studied beta-hydroxylases that have been cloned and characterized from many organisms, the epsilon-hydroxylase has only been genetically defined by the lut1 mutation in Arabidopsis. We have isolated the LUT1 gene by positional cloning and found that, in contrast to all known carotenoid hydroxylases, which are the nonheme diiron monooxygenases, LUT1 encodes a cytochrome p450-type monooxygenase, CYP97C1. Introduction of a null mutant allele of LUT1, lut1-3, into the beta-hydroxylase 1/beta-hydroxylase 2 (b1 b2) double-mutant background, in which both Arabidopsis beta-hydroxylases are disrupted, yielded a genotype (lut1-3 b1 b2) in which all three known carotenoid hydroxylase activities are eliminated. Surprisingly, hydroxylated beta-rings were still produced in lut1-3 b1 b2, suggesting that a fourth unknown carotenoid beta-hydroxylase exists in vivo that is structurally unrelated to beta-hydroxylase 1 or 2. A second chloroplast-targeted member of the CYP97 family, CYP97A3, is 49% identical to LUT1 and hypothesized as a likely candidate for this additional beta-ring hydroxylation activity. Overall, LUT1 defines a class of carotenoid hydroxylases that has evolved independently from and uses a different mechanism than nonheme diiron beta-hydroxylases.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Carotenoids/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Genes, Plant , Amino Acid Sequence , Arabidopsis/enzymology , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Base Sequence , Carotenoids/chemistry , Chromosome Mapping , Cloning, Molecular , Cytochrome P-450 Enzyme System/chemistry , DNA, Plant/genetics , Gene Expression , Genetic Complementation Test , Hydroxylation , Lutein/chemistry , Lutein/metabolism , Molecular Sequence Data , Mutation , Phylogeny
15.
Plant Cell Physiol ; 44(1): 85-92, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12552151

ABSTRACT

To understand the molecular mechanisms that control seed formation, we selected a seed-preferential gene (CvADH1) from the ESTs of developing watermelon seeds. RNA blot analysis and in situ localization showed that CvADH1 was preferentially expressed in the nucellar tissue. The CvADH1 protein shared about 50% homology with short-chain alcohol dehydrogenase including ABA2 in Arabidopsis thaliana, stem secoisolariciresinol dehydrogenase in Forsythia intermedia, and 3beta-hydroxysterol dehydrogenase in Digitalis lanata. We investigated gene-expression levels in seeds from both normally pollinated fruits and those made parthenocarpic via N-(2-chloro-4-pyridyl)-N'-phenylurea treatment, the latter of which lack zygotic tissues. Whereas the transcripts of CvADH1 rapidly started to accumulate from about the pre-heart stage in normal seeds, they were not detectable in the parthenocarpic seeds. Treating the parthenogenic fruit with GA(3) strongly induced gene expression, up to the level accumulated in pollinated seeds. These results suggest that the CvADH1 gene is induced in maternal tissues by signals made in the zygotic tissues, and that gibberellin might be one of those signals. We also observed that CvADH1 expression was induced by sucrose in the parthenocarpic seeds. Therefore, we propose that the CvADH1 gene is inducible by gibberellin, and that sucrose plays an important role in the maternal tissues of watermelon during early seed development.


Subject(s)
Alcohol Dehydrogenase/genetics , Citrullus/genetics , Gibberellins/pharmacology , Plant Proteins/genetics , Seeds/genetics , Sucrose/pharmacology , Alcohol Dehydrogenase/metabolism , Amino Acid Sequence , Blotting, Northern , Citrullus/enzymology , Cloning, Molecular , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Plant/drug effects , In Situ Hybridization , Molecular Sequence Data , Phylogeny , Plant Proteins/metabolism , RNA, Messenger/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproduction/genetics , Seeds/drug effects , Seeds/enzymology , Sequence Homology, Amino Acid
16.
Plant Cell Physiol ; 44(12): 1403-11, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14701936

ABSTRACT

We have generated 47 DNA pools and 235 subpools from 21,049 T-DNA insertion lines of rice. DNA pools of 500-1,000 lines were adequate for screening a T-DNA insertion within a 2-kb region. To examine the efficacy of the DNA pools, we selected MADS-box genes, which play an important role in controlling various aspects of plant development. A total of 34 MIKC-type MADS-box genes have now been identified from rice sequence databases. Our PCR screening for T-DNA insertions within 12 MADS-box genes resulted in the identification of five insertions in four different genes. These DNA pools will be valuable when isolating T-DNA insertional mutants in various rice genes. The DNA pool screening service and the mutant seeds are available upon request to genean@postech.ac.kr.


Subject(s)
Genome, Plant , MADS Domain Proteins/genetics , Oryza/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Mutation , Oryza/chemistry , Phylogeny , Plant Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction
17.
Mol Cells ; 14(2): 255-60, 2002 Oct 31.
Article in English | MEDLINE | ID: mdl-12442898

ABSTRACT

To understand the molecular mechanisms that control seed development, we isolated a seed-preferential gene from ESTs of developing watermelon seeds. The gene Cvsus1 encodes a protein that is 86% identical to the Vicia faba sucrose synthase expressed in developing seeds. RNA blot analysis showed that Cvsus1 was preferentially expressed in watermelon seeds. We also investigated gene expression levels both in pollinated seeds and in parthenocarpic seeds, which lack zygotic tissues. Whereas the transcript level of Cvsus1 was rapidly increased during normal seed development, the expression was not significantly increased in the parthenocarpic seeds. However, treating the parthenocarpic fruits with GA3 strongly induced Cvsus1 expression, up to the level accumulated in pollinated seeds. These results suggest that Cvsus1 is induced in maternal tissues via signals from the zygotic tissues, and that GA may be one of those signals.


Subject(s)
Citrullus/genetics , Gibberellins/metabolism , Glucosyltransferases/genetics , Seeds/genetics , Blotting, Southern , Citrullus/embryology , Citrullus/enzymology , Glucosyltransferases/metabolism , Parthenogenesis/genetics , Parthenogenesis/physiology , Phylogeny , Seeds/embryology , Seeds/metabolism
18.
Plant Cell Physiol ; 43(2): 152-8, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11867694

ABSTRACT

We have isolated Cv3h, a cDNA clone from the developing seeds of watermelon, and have demonstrated significant amino acid homology with gibberellin (GA) 3 beta-hydroxylases. This cDNA clone was expressed in Escherichia coli as a fusion protein that oxidized GA(9) and GA(12) to GA(4) and GA(14), respectively. The Cv3h protein had the highest similarity with pumpkin GA 2 beta,3 beta-hydroxylase, but did not possess 2 beta-hydroxylation function. RNA blot analysis showed that the gene was expressed primarily in the inner parts of developing seeds, up to 10 d after pollination (DAP). In the parthenocarpic fruits induced by treatment with 1-(2-chloro-4-pyridyl)-3-phenylurea (CPPU), the embryo and endosperm of the seeds were undeveloped, whereas the integumental tissues, of maternal origin, showed nearly normal development. Cv3h mRNA was undetectable in the seeds of CPPU-treated fruits, indicating that the GA 3 beta-hydroxylase gene was expressed in zygotic cells. In our analysis of endogenous GAs from developing seeds, GA(9) and GA(4) were detected at high levels but those of GA(20) and GA(1) were very low. This demonstrates that GA biosynthesis in seeds prefers a non-13-hydroxylation pathway over an early 13-hydroxylation pathway. We also analyzed endogenous GAs from seeds of the parthenocarpic fruits. The level of bioactive GA(4 )was much lower there than in normal seeds, indicating that bioactive GAs, unconnected with Cv3h, exist in integumental tissues during early seed development.


Subject(s)
Citrullus/genetics , Gibberellins/biosynthesis , Mixed Function Oxygenases/genetics , Seeds/genetics , Amino Acid Sequence , Citrullus/enzymology , Citrullus/growth & development , Cloning, Molecular , DNA, Complementary/genetics , DNA, Complementary/isolation & purification , Escherichia coli/genetics , Gene Expression , Mixed Function Oxygenases/drug effects , Mixed Function Oxygenases/metabolism , Molecular Sequence Data , Phenylurea Compounds/pharmacology , Pyridines/pharmacology , Seeds/enzymology , Seeds/growth & development , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...