Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Converg ; 4(1): 31, 2017.
Article in English | MEDLINE | ID: mdl-29238653

ABSTRACT

We describe a fabrication strategy for preparing yttria-stabilized zirconia nanotube (YSZ-NT) arrays embedded in porous alumina membranes by means of template-directed atomic layer deposition (ALD) technique. The individual YSZ-NTs have a high aspect-ratio of well over 120, about ~ 110 nm in diameter, and ~ 14 µm in length. Interfacing the tube arrays with porous Pt was also introduced on the basis of partial etching technique in order to construct Pt/YSZ-NTs/Pt membrane electrode assembly (MEA) structures. The resulting YSZ-NTs MEAs show a 7 mm in diameter with a roughness factor of ~ 2. Area specific resistance was measured up to 1.84 Ω cm2 at 400 °C using H2 as fuel.

2.
ACS Appl Mater Interfaces ; 9(19): 16063-16070, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28443657

ABSTRACT

All-solid-state Li-rechargeable batteries using a 500 nm-thick LiCoO2 (LCO) film deposited on two NASICON-type solid electrolyte substrates, LICGC (OHARA Inc.) and Li1.3Al0.3Ti1.7(PO4)3 (LATP), are constructed. The postdeposition annealing temperature prior to the cell assembly is critical to produce a stable sharp LCO/electrolyte interface and to develop a strong crystallographic texture in the LCO film, conducive to migration of Li ions. Although the cells deliver a limited discharge capacity, the cells cycled stably for 50 cycles. The analysis of the LCO/electrolyte interfaces after cycling demonstrates that the sharp interface, once formed by proper thermal annealing, will remain stable without any evidence for contamination and with minimal intermixing of the constituent elements during cycling. Hence, although ionic conductivity of the NASICON-type solid electrolyte is lower than that of the sulfide electrolytes, the NACSICON-type electrolytes will maintain a stable interface in contact with a LCO cathode, which should be beneficial to improving the capacity retention as well as the rate capability of the all-solid state cell.

3.
J Phys Chem Lett ; 8(1): 235-242, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27981844

ABSTRACT

Perovskite oxides have the capacity to efficiently catalyze the oxygen reduction reaction (ORR), which is of fundamental importance for electrochemical energy conversion. While the perovskite catalysts have been generally utilized with a support, the role of the supports, regarded as inert toward the ORR, has been emphasized mostly in terms of the thermal stability of the catalyst system and as an ancillary transport channel for oxygen ions during the ORR. We demonstrate a novel approach to improving the catalytic activity of perovskite oxides for solid oxide fuel cells by controlling the oxygen-ion conducting oxide supports. Catalytic activities of (La0.8Sr0.2)0.95MnO3 perovskite thin-film placed on different oxide supports are characterized by electrochemical impedance spectroscopy and X-ray absorption spectroscopy. These analyses confirm that the strong atomic orbital interactions between the support and the perovskite catalyst enhance the surface exchange kinetics by ∼2.4 times, in turn, improving the overall ORR activity.

4.
ACS Appl Mater Interfaces ; 7(49): 27234-41, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26600453

ABSTRACT

We report novel salami-like core-sheath composites consisting of Si nanoparticle assemblies coated with indium tin oxide (ITO) sheath layers that are synthesized via coelectrospinning. Core-sheath structured Si nanoparticles (NPs) in static ITO allow robust microstructures to accommodate for mechanical stress induced by the repeated cyclical volume changes of Si NPs. Conductive ITO sheaths can provide bulk conduction paths for electrons. Distinct Si NP-based core structures, in which the ITO phase coexists uniformly with electrochemically active Si NPs, are capable of facilitating rapid charge transfer as well. These engineered composites enabled the production of high-performance anodes with an excellent capacity retention of 95.5% (677 and 1523 mAh g(-1,) which are based on the total weight of Si-ITO fibers and Si NPs only, respectively), and an outstanding rate capability with a retention of 75.3% from 1 to 12 C. The cycling performance and rate capability of core-sheath-structured Si NP-ITO are characterized in terms of charge-transfer kinetics.

5.
Sci Rep ; 4: 3937, 2014 Feb 03.
Article in English | MEDLINE | ID: mdl-24487242

ABSTRACT

Electrochemical analysis allows in situ characterization of solid oxide electrochemical cells (SOCs) under operating conditions. However, the SOCs that have been analyzed in this way have ill-defined or uncommon microstructures in terms of porosity and tortuosity. Therefore, the nano-scale characterization of SOCs with respect to three-phase boundaries has been hindered. We introduce novel in situ electrochemical analysis for SOCs that uses combined solid electrolyte potentiometry (SEP) and impedance measurements. This method is employed to investigate the oscillatory behavior of a porous Ni-yttria-stabilized zirconia (YSZ) anode during the partial oxidation of methane under ambient pressure at 800°C. The cyclic oxidation and reduction of nickel induces the oscillatory behavior in the impedance and electrode potential. The in situ characterization of the nickel surface suggests that the oxidation of the nickel occurs predominantly at the two-phase boundaries, whereas the nickel at the three-phase boundaries remains in the metallic state during the cyclic redox reaction.

6.
J Nanosci Nanotechnol ; 13(6): 4265-70, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23862484

ABSTRACT

Porous platinum films have been fabricated by reactive sputtering combined with subsequent thermal annealing. Using the SEM, XRD, XPS, and polarization resistance measurement techniques, the microstructural development of the film and its resultant electrochemical properties have been characterized. Pore evolution was understood as a result of the thermal grooving of platinum during annealing process. We demonstrated that crystallization should be followed by agglomeration for the evolution of porous microstructures. Furthermore, reaction sputtering affected the adhesion enhancement between the film and substrate compared to the film deposited by non-reactive sputtering. The polarization resistance of the porous platinum film was five times lower than that of the dense platinum film. At 600 degrees C the resistance of the porous film was 5.67 omega x cm2, and that of the dense film was 38 omega x cm2.

7.
ACS Appl Mater Interfaces ; 4(10): 5408-15, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-22999049

ABSTRACT

The SnO(2) anode is a promising anode for next-generation Li ion batteries because of its high theoretical capacity. However, it exhibits inherent capacity fading because of the large volume change and pulverization that occur during the charge/discharge cycles. The buffer matrix, such as electrospun carbon nanofibers (CNFs), can alleviate this problem to some extent, but SnO(2) particles are thermodynamically incompatible with the carbon matrix such that large Sn agglomerates form after carbonization upon melting of the Sn. Herein, we introduce well-dispersed nanosized SnO(2) attached to CNFs for high-performance anodes developed by Ni presence. The addition of Ni increases the stability of the SnO(2) such that the morphologies of the dispersed SnO(2) phase are modified as a function of the Ni composition. The optimal adding composition is determined to be Ni:Sn = 10:90 wt % in terms of the crystallite size and the distribution uniformity. A high capacity retention of 447.6 mA h g(-1) after 100 cycles can be obtained for 10 wt % Ni-added SnO(2)-CNFs, whereas Ni-free Sn/SnO(2)-CNFs have a capacity retention of 304.6 mA h g(-1).


Subject(s)
Carbon/chemistry , Electric Power Supplies , Lithium/chemistry , Nanofibers/chemistry , Nickel/chemistry , Tin Compounds/chemistry , Electrochemical Techniques , Ions/chemistry , Thermodynamics
8.
J Nanosci Nanotechnol ; 9(7): 4056-60, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19916408

ABSTRACT

The use of nanostructured materials in Li-ion batteries is desirable from the point of view of achieving enhanced performance, due to the shorter Li-ion diffusion distance and the small dimensional changes upon cycling. Herein, the nanocrystalline calcium cobaltite (Ca3Co4O9) powders were prepared by the Pechini process. The obtained nano-plate powders have a thickness of the order of 10-50 nm and a diameter of around 300 nm. We investigated the electrochemical properties of Ca3Co4O9 as a potential new anode material with high capacity for Li-ion batteries. In addition, the mechanism of Li reactivity was successfully explained using high resolution transmission electron microscopy. The full reduction of Ca3Co4O9 by lithium leads to the destruction of crystal structure and subsequent formation of a nanocomposite electrode containing Co, Li2O, CaO, and a polymeric layer. The inactive CaO matrix is expected to mitigate the aggregation of the Co nanoparticles on continued cycling, thereby improving the capacity retention.

9.
Arch Pharm Res ; 31(4): 445-50, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18449501

ABSTRACT

The root of Paeonia lactiflora PALL (PL, Family Paeoniaceae) has been used frequently as an antipyretic and anti-inflammatory agent in traditional medicines of Korea, China and Japan. To evaluate antiallergic effect of PL, we isolated its main constituents, paeoniflorin and paeonol, and evaluated in vivo their inhibitory effects against passive cutaenous anaphylaxis (PCA) reaction induced by IgE-antigen complex and scratching behaviors induced by compound 48/80. PL, paeoniflorin and paeonol potently inhibited PCA reaction and scratching behaviors in mice. Paeoniflorin exhibited the most potent inhibition against scratching behaviors and the acetic acid-induced writhing syndrome in mice. Paeonol most potently inhibited PCA reaction and mast cells degranulation. These findings suggest that PL can improve IgE-induced anaphylaxis and scratching behaviors, and may be due to the effect of its constituents, paeoniflorin and paeonol.


Subject(s)
Acetophenones/pharmacology , Analgesics/pharmacology , Anti-Allergic Agents/pharmacology , Antipruritics/pharmacology , Benzoates/pharmacology , Bridged-Ring Compounds/pharmacology , Glucosides/pharmacology , Paeonia , Acetic Acid , Acetophenones/isolation & purification , Analgesics/isolation & purification , Animals , Anti-Allergic Agents/isolation & purification , Antipruritics/isolation & purification , Asthma/immunology , Asthma/prevention & control , Behavior, Animal/drug effects , Benzoates/isolation & purification , Bridged-Ring Compounds/isolation & purification , Cell Degranulation/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Glucosides/isolation & purification , Male , Mast Cells/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Monoterpenes , Ovalbumin , Paeonia/chemistry , Pain/chemically induced , Pain/prevention & control , Pain Measurement , Passive Cutaneous Anaphylaxis/drug effects , Plant Roots , Pruritus/chemically induced , Pruritus/prevention & control , Rats , Rats, Sprague-Dawley , p-Methoxy-N-methylphenethylamine
SELECTION OF CITATIONS
SEARCH DETAIL
...