Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncoscience ; 7(1-2): 1-9, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32258242

ABSTRACT

MicroRNA-145 (miR-145) plays a suppressive role in the process of tumorigenesis and an important role in induction of autophagy. However, the exact role of miR-145 in therapeutically resistant neuroblastoma cells remain elusive. Herein, we sought to evaluate the effects of miR-145 overexpression in chemo­ and radiation-resistant neuroblastoma cells. We hypothesized that miR-145 affects the aggressiveness of resistant cells by enhancing autophagy. We established Cisplatin-resistant (CDDP-R), Vincristine-resistant (Vin-R), and radiation-resistant (Rad-R) neuroblastoma cells and found that miR-145 expression was significantly decreased in the resistant cells compared to the parental cells. Exogenously expression of miR-145 inhibited oncogenic properties such as proliferation, clonogenicity, anchorage-independent growth, cell migration, and tubule formation in the resistant cells. In addition, we also found that an autophagy protein marker, LC3, was only minimally expressed in the resistant cells. In particular, when miR-145 was overexpressed in the resistant cells, LC3 I and II were expressed and an increased punctate fluorescence of LC3 protein was found indicating the induction of autophagy. Taken together, our data suggests that miR-145 inhibits tumorigenesis and aggressiveness via modulation of autophagy in neuroblastoma.

2.
Oncotarget ; 10(54): 5645-5659, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31608140

ABSTRACT

Neuroblastoma remains one of the most difficult pediatric solid tumors to treat. In particular, the refractory and relapsing neuroblastomas are highly heterogeneous with diverse molecular profiles. We previously demonstrated that AKT2 plays critical roles in the regulation of neuroblastoma tumorigenesis. Here we hypothesize that targeting AKT2 could block the signal transduction pathways enhanced in chemo- and/or radiation-resistant neuroblastoma cancer stem-like cells. We found cell proliferation and survival signaling pathways AKT2/mTOR and MAPK were enhanced in cisplatin (CDDP)- and radiation-resistant neuroblastoma cells. Blocking these two pathways with specific inhibitors, CCT128930 (AKT2 inhibitor) and PD98059 (MEK inhibitor) decreased cell proliferation, angiogenesis, and cell migration in these resistant cells. We further demonstrated that the resistant cells had a higher sphere-forming capacity with increased expression of stem cell markers CD133, SOX2, ALDH, Nestin, Oct4, and Nanog. Importantly, the tumorsphere formation, which is a surrogate assay for self-renewal, was sensitive to the inhibitors of AKT2 and MAPK. Taken together, our findings suggest that CDDP- and radiation-resistant cancer stem-like neuroblastoma cells might serve as a useful tool to improve the understanding of molecular mechanisms of therapeutic resistance. This may aid in the development of more effective novel treatment strategies and better clinical outcomes in patients with neuroblastoma.

SELECTION OF CITATIONS
SEARCH DETAIL
...