Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Cancer Discov ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975873

ABSTRACT

Intra-tumoral heterogeneity in pancreatic ductal adenocarcinoma (PDAC) is characterized by a balance between basal and classical epithelial cancer cell states, with basal dominance associating with chemoresistance and a dismal prognosis. Targeting oncogenic KRAS, the primary driver of pancreatic cancer, shows early promise in clinical trials but efficacy is limited by acquired resistance. Using genetically engineered mouse models and patient-derived xenografts, we find that basal PDAC cells are highly sensitive to KRAS inhibitors. Employing fluorescent and bioluminescent reporter systems, we longitudinally track cell-state dynamics in vivo and reveal a rapid, KRAS inhibitor-induced enrichment of the classical state. Lineage-tracing identifies these enriched classical PDAC cells to be a reservoir for disease relapse. Genetic ablation of the classical cell-state is synergistic with KRAS inhibition, providing a pre-clinical proof-of-concept for this therapeutic strategy. Our findings motivate combining classical-state directed therapies with KRAS inhibitors to deepen responses and counteract resistance in pancreatic cancer.

2.
Cell Death Dis ; 14(12): 822, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38092725

ABSTRACT

Jagged1 (JAG1) is a Notch ligand that correlates with tumor progression. Not limited to its function as a ligand, JAG1 can be cleaved, and its intracellular domain translocates to the nucleus, where it functions as a transcriptional cofactor. Previously, we showed that JAG1 intracellular domain (JICD1) forms a protein complex with DDX17/SMAD3/TGIF2. However, the molecular mechanisms underlying JICD1-mediated tumor aggressiveness remains unclear. Here, we demonstrate that JICD1 enhances the invasive phenotypes of glioblastoma cells by transcriptionally activating epithelial-to-mesenchymal transition (EMT)-related genes, especially TWIST1. The inhibition of TWIST1 reduced JICD1-driven tumor aggressiveness. Although SMAD3 is an important component of transforming growth factor (TGF)-ß signaling, the JICD1/SMAD3 transcriptional complex was shown to govern brain tumor invasion independent of TGF-ß signaling. Moreover, JICD1-TWIST1-MMP2 and MMP9 axes were significantly correlated with clinical outcome of glioblastoma patients. Collectively, we identified the JICD1/SMAD3-TWIST1 axis as a novel inducer of invasive phenotypes in cancer cells.


Subject(s)
Glioblastoma , Humans , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Glioblastoma/genetics , Homeodomain Proteins/metabolism , Ligands , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Signal Transduction , Smad3 Protein/genetics , Smad3 Protein/metabolism , Transforming Growth Factor beta/metabolism , Twist-Related Protein 1/genetics , Twist-Related Protein 1/metabolism
3.
Int J Mol Sci ; 24(19)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37834227

ABSTRACT

Glioblastoma (GBM) is the most lethal brain cancer, causing inevitable deaths of patients owing to frequent relapses of cancer stem cells (CSCs). The significance of the NOTCH signaling pathway in CSCs has been well recognized; however, there is no NOTCH-selective treatment applicable to patients with GBM. We recently reported that Jagged1 (JAG1), a NOTCH ligand, drives a NOTCH receptor-independent signaling pathway via JAG1 intracellular domain (JICD1) as a crucial signal that renders CSC properties. Therefore, mechanisms regulating the JICD1 signaling pathway should be elucidated to further develop a selective therapeutic regimen. Here, we identified annexin A2 (ANXA2) as an essential modulator to stabilize intrinsically disordered JICD1. The binding of ANXA2 to JICD1 prevents the proteasomal degradation of JICD1 by heat shock protein-70/90 and carboxy-terminus of Hsc70 interacting protein E3 ligase. Furthermore, JICD1-driven propagation and tumor aggressiveness were inhibited by ANXA2 knockdown. Taken together, our findings show that ANXA2 maintains the function of the NOTCH receptor-independent JICD1 signaling pathway by stabilizing JICD1, and the targeted suppression of JICD1-driven CSC properties can be achieved by blocking its interaction with ANXA2.


Subject(s)
Annexin A2 , Glioblastoma , Humans , Annexin A2/genetics , Annexin A2/metabolism , Cell Line, Tumor , Glioblastoma/metabolism , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , Neoplasm Recurrence, Local , Receptors, Notch/metabolism
4.
Cell Rep ; 41(8): 111626, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36417870

ABSTRACT

Jagged1 (JAG1) is a Notch ligand that contact-dependently activates Notch receptors and regulates cancer progression. The JAG1 intracellular domain (JICD1) is generated from JAG1, like formation of the NOTCH1 intracellular domain (NICD1); however, the role of JICD1 in tumorigenicity has not been comprehensively elucidated. Here we show that JICD1 induces astrocytes to acquire several cancer stem cell properties, including tumor formation, invasiveness, stemness, and resistance to anticancer therapy. The transcriptome, chromatin immunoprecipitation sequencing (ChIP-seq), and proteomics analyses show that JICD1 increases SOX2 expression by forming a transcriptional complex with DDX17, SMAD3, and TGIF2. JICD1-driven tumorigenicity is directly regulated by SOX2. Our results demonstrate that, like NICD1, JICD1 acts as a transcriptional cofactor in formation of the DDX17/SMAD3/TGIF2 transcriptional complex, leading to oncogenic transformation.


Subject(s)
Receptors, Notch , Signal Transduction , Signal Transduction/physiology , Receptors, Notch/metabolism , Oncogenes , Neoplastic Stem Cells/metabolism , Protein Binding
5.
Biotechnol J ; 17(7): e2100434, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35233982

ABSTRACT

Alternative cancer models that are close to humans are required to create more valuable preclinical results during oncology studies. Here, a new onco-pig model via developing a CRISPR-Cas9-based Conditional Polycistronic gene expression Cassette (CRI-CPC) system to control the tumor inducing simian virus 40 large T antigen (SV40LT) and oncogenic HRASG12V . After conducting somatic cell nuclear transfer (SCNT), transgenic embryos were transplanted into surrogate mothers and five male piglets were born. Umbilical cord analysis confirmed that all piglets were transgenic. Two of them survived and they expressed a detectable green fluorescence. The test was made whether CRI-CPC models were naturally fertile and whether the CRI-CPC system was stably transferred to the offspring. By mating with a normal female pig, four offspring piglets were successfully produced. Among them, only three male piglets were transgenic. Finally, their applicability was tested as cancer models after transduction of Cas9 into fibroblasts from each CRI-CPC pig in vitro, resulting in cell acquisition of cancerous characteristics via the induction of oncogene expression. These results showed that our new CRISPR-Cas9-based onco-pig model was successfully developed.


Subject(s)
CRISPR-Cas Systems , Nuclear Transfer Techniques , Animals , Animals, Genetically Modified , CRISPR-Cas Systems/genetics , Female , Fibroblasts/metabolism , Gene Knockout Techniques , Humans , Male , Oncogenes , Swine/genetics
6.
Oncogene ; 39(9): 1969-1982, 2020 02.
Article in English | MEDLINE | ID: mdl-31772327

ABSTRACT

Most of the mechanisms governing apoptotic and non-apoptotic cell death are regulated independently. However, cells may experience various stresses that lead to both apoptotic and non-apoptotic cell death. In particular, cancer cells require a program that simultaneously avoids these forms of cell death, but the mechanism by which they are able to do so is currently unclear. Here, we show that ABC transporter subfamily B member 7 (ABCB7), one of the mitochondrial iron transporters, induces the hypoxia-independent accumulation of hypoxia-inducible factor 1 alpha by controlling intracellular iron homeostasis and inhibits both apoptotic and non-apoptotic cell death. Mechanistically, ABCB7 mitigates non-apoptotic cell death by reducing levels of mitochondrial reactive oxygen species. ABCB7 also suppresses apoptosis by inhibiting the expression of leucine zipper downregulated in cancer 1, an inhibitor of nuclear factor-kappa B signaling. Therefore, our results support that ABCB7 is crucial in controlling both apoptotic and non-apoptotic cell death and indicate that the fine-tuning of intracellular iron homeostasis may be a novel anticancer strategy.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Apoptosis , Glioblastoma/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mitochondria/metabolism , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , ATP-Binding Cassette Transporters/genetics , Biomarkers, Tumor , Cell Death , Cytoplasm/metabolism , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Iron/metabolism , Mitochondria/genetics , NF-kappa B/genetics , Signal Transduction , Tumor Cells, Cultured
7.
J Ethnopharmacol ; 236: 393-400, 2019 May 23.
Article in English | MEDLINE | ID: mdl-30878548

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Korean Red ginseng extract (RG) is one of the most widely used traditional health functional food in Asia, which invigorates immunity and vital energy. RG have been suggested to inhibit proliferation, invasion, and inflammation in several cancer cell lines. Correspondingly, clinical studies have raised the possibility that RG could augment therapeutic efficacy in cancer patients. However, little is known about the anti-cancer effects of RG in glioblastoma (GBM), the most common and aggressive brain tumor for which effective therapeutic regimens need to be developed. AIM OF THIS STUDY: Here, we assessed the in vivo and in vitro anti-cancer properties of RG in a patient-derived xenograft mouse model and GBM stem cell (GSC) line. MATERIALS AND METHODS: We evaluated the anti-cancer effects of RG in patient-derived GBM xenograft mice with and without combined concurrent chemo- and radiation therapy (CCRT). Furthermore, we verified the in vitro effects of RG on the proliferation, cell death, and stem cell-like self-renewal capacity of cancer cells. Finally, we investigated the signaling pathway affected by RG, via which its anti-cancer effects were mediated. RESULTS: When combined with CCRT, RG impeded GBM progression by reducing cancer cell proliferation and ionized calcium-binding adapter molecule 1 (IBA1)-positive immune cell recruitment. The anti-cancer effects of RG were mediated by Rg3 and Rh2 ginsenosides. Rg3 promoted cell death while Rh2 did not. Furthermore, both Rg3 and Rh2 reduced cell viability and self-renewal capacity of GSCs by inhibiting Wnt/ß-catenin signaling. CONCLUSION: Therefore, our observations imply that RG could be applied to the GBM patients in parallel with CCRT to enhance therapeutic efficacy.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Panax/chemistry , Plant Extracts/pharmacology , Adult , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/therapeutic use , Brain/cytology , Brain/pathology , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Glioblastoma/pathology , Humans , Medicine, Korean Traditional , Mice , Neoplastic Stem Cells , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Wnt Signaling Pathway/drug effects , Xenograft Model Antitumor Assays
8.
J Med Food ; 20(9): 838-845, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28792781

ABSTRACT

Glioblastoma multiforme (GBM) is one of the most aggressive and lethal human brain tumors, and the median survival of patients with GBM is only 14 months. Glioblastoma stem cells (GSCs) are regarded as a main cause of GBM recurrence, because of their self-renewal and drug resistance properties. Therefore, targeting GSCs is an important therapeutic strategy for GBM. In this study, we show the effects of BRM270, a compound from natural plant extracts, on GSCs in vitro and GBM recurrence in vivo. BRM270 induced apoptotic cell death and inhibited cell growth and "stemness" both in vitro and in vivo. Combining BRM270 treatment with concurrent chemoradiotherapy (CCRT) dramatically increased mice survival and tumor growth inhibition. Taken together, our results suggested that BRM270 synergizes with CCRT as a therapeutic agent to target GSCs.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Brain Neoplasms/drug therapy , Cell Proliferation/drug effects , Glioblastoma/drug therapy , Neoplastic Stem Cells/cytology , Plant Extracts/administration & dosage , Animals , Apoptosis/drug effects , Brain Neoplasms/physiopathology , Brain Neoplasms/radiotherapy , Cell Proliferation/radiation effects , Chemoradiotherapy , Combined Modality Therapy , Glioblastoma/physiopathology , Glioblastoma/radiotherapy , Humans , Mice , Mice, Nude , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/radiation effects
9.
Arch Dermatol Res ; 309(8): 665-671, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28752204

ABSTRACT

Maintaining a youthful appearance is a common desire among the aging population. Loss of elasticity and dermal density constitutes major causes of wrinkle formation during skin aging. In particular, periorbital wrinkles comprise the critical assessment point of skin aging. To address these issues, cosmetic industries have been making increasing efforts to develop efficient agents against wrinkle formation. Arg-Gly-Asp (RGD) is a tripeptide sequence used for surface coating because of its integrin-binding property. However, its pharmacological properties on skin have not yet been studied. Here, we synthesize the novel palmitoyl-Arg-Gly-Asp (Palm-RGD) and investigate its effects on periorbital wrinkle formation by clinical and in vitro studies. We observed that Palm-RGD cream application for 12 weeks decreased global photodamage and skin roughness (R1, R2, R3, and Ra) scores without causing skin irritation. In addition, topical application of Palm-RGD cream time-dependently increased skin elasticity and dermal density. An in vitro study using human dermal fibroblasts (HDFs) demonstrated increased type I procollagen production by Palm-RGD treatment. Furthermore, Palm-RGD suppressed MMP-1 expression in HDFs. Our results demonstrate that Palm-RGD has protective effects against wrinkle formation, likely through the activation of collagen expression and the protection against collagen degradation. Therefore, Palm-RGD could be used as a potential agent for the prevention of wrinkle formation consequent to aging.


Subject(s)
Asian People , Face , Oligopeptides/pharmacology , Skin Aging/drug effects , Administration, Topical , Adult , Cells, Cultured , Double-Blind Method , Female , Fibroblasts/drug effects , Gene Expression Regulation/drug effects , Humans , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Middle Aged , Oligopeptides/administration & dosage , Procollagen/genetics , Procollagen/metabolism
10.
Arch Dermatol Res ; 309(5): 397-402, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28303328

ABSTRACT

Wrinkle formation and abnormal pigmentation are major clinical alterations associated with skin aging. As the aim of our study was to investigate the effects of palmitoyl-KVK-L-ascorbic acid on skin aging, the anti-wrinkle and depigmentation effects of palmitoyl-KVK-L-ascorbic acid were evaluated by measuring collagen expression in dermal fibroblast cells and inhibition of melanogenesis in B16F1 cells, respectively. The anti-aging effect of palmitoyl-KVK-L-ascorbic acid cream was also evaluated against a placebo cream in a clinical trial. Our results confirmed that the expression of type Ι collagen in dermal fibroblast cells treated with palmitoyl-KVK-L-ascorbic acid (0.1-4 µg/mL) increased in a dose-dependent manner. In B16F1 cells, treatment with 20 µg/mL palmitoyl-KVK-L-ascorbic acid reduced the melanin content by approximately 20% compared to alpha-melanocyte stimulating hormone treatment. In the clinical trial, application of palmitoyl-KVK-L-ascorbic acid cream led to an improvement in skin roughness and lightness in 12 and 8 weeks, respectively. Our data show that palmitoyl-KVK-L-ascorbic acid is an effective anti-aging agent that reduces wrinkles and abnormal skin pigmentation.


Subject(s)
Ascorbic Acid/analogs & derivatives , Ascorbic Acid/pharmacology , Collagen/biosynthesis , Oligopeptides/pharmacology , Skin Aging/drug effects , Skin Lightening Preparations/pharmacology , Adult , Cell Line , Female , Humans , Middle Aged , Skin/drug effects , Skin/physiopathology , Skin Aging/physiology
11.
Org Lett ; 18(11): 2644-7, 2016 06 03.
Article in English | MEDLINE | ID: mdl-27213631

ABSTRACT

A multicomponent multicatalyst reaction (MC)(2)R for constructing fully substituted 1,2,3-triazoles is reported. An application of chemoselectivity and latent catalysis in a sequence of multicatalytic reactions confers control over a number of undesired processes, where all of the reagents coexist in the same reaction vessel. The sequence of a chemoselective copper-catalyzed azide alkyne cycloaddition followed by a palladium/copper-catalyzed Sonogashira cross-coupling afforded 1,2,3-triazoles regioselectively with good to high yields and a broad scope.

12.
J Dermatol Sci ; 76(3): 214-21, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25450093

ABSTRACT

BACKGROUND: Sensitive skin represents hyperactive sensory symptoms showing exaggerated reactions in response to internal stimulants or external irritants. Although sensitive skin is a very common condition affecting an estimated 50% of the population, its pathophysiology remains largely elusive, particularly with regard to its metabolic aspects. OBJECTIVE: The objective of our study was to investigate the pathogenesis of sensitive skin. METHODS: We recruited healthy participants with 'sensitive' or 'non-sensitive' skin based on standardized questionnaires and 10% lactic acid stinging test, and obtained skin samples for microarray analysis and subsequent experiments. RESULTS: Microarray transcriptome profiling revealed that genes involved in muscle contraction, carbohydrate and lipid metabolism, and ion transport and balance were significantly decreased in sensitive skin. These altered genes could account for the abnormal muscle contraction, decreased ATP amount in sensitive skin. In addition, pain-related transcripts such as TRPV1, ASIC3 and CGRP were significantly up-regulated in sensitive skin, compared with non-sensitive skin. CONCLUSIONS: Our findings suggest that sensitive skin is closely associated with the dysfunction of muscle contraction and metabolic homeostasis.


Subject(s)
Adenosine Triphosphate/biosynthesis , Muscle Contraction/physiology , Skin/physiopathology , Acid Sensing Ion Channels/genetics , Adult , Animals , Calcitonin Gene-Related Peptide/genetics , Cell Line , Connectin/genetics , Energy Metabolism , Female , Gene Expression Profiling , Humans , Hydrogen-Ion Concentration , Irritants/toxicity , Lactic Acid/toxicity , Male , Middle Aged , Muscle Contraction/drug effects , Rats , Skin/drug effects , Skin/metabolism , TRPV Cation Channels/genetics , Young Adult
13.
Int J Vitam Nutr Res ; 82(2): 85-93, 2012 Apr.
Article in English | MEDLINE | ID: mdl-23065833

ABSTRACT

In the present study, the nutritional quality of four grains including adlay (AD), buckwheat (BW), glutinous barley (GB), and white rice (WR) were evaluated in terms of plasma lipid parameters, gut transit time, and thickness of the aortic wall in rats. The rats were then raised for 4 weeks on the high-fat diet based on the American Institute of Nutrition-93 (AIN-93 G) diets containing 1 % cholesterol and 20 % dietary lipids. Forty male rats were divided into 4 groups and raised for 4 weeks with a diet containing one of the following grains: WR, AD, BW, or WB. The level of thiobarbituric acid-reactive substances (TBARS) in liver was shown to be higher in rats by the order of those fed WR, AD, GB, and BW. This indicates that other grains decreased oxidative stress in vivo more than WR. The superoxide dismutase, glutathione, glutathione peroxidase, and glutathione reductase levels in the AD, BW, and GB groups were significantly higher than those in the WR group (p < 0.05). Plasma lipid profiles differed significantly according to grain combination, and decreased aortic wall thickness was consistent with the finding of decreased plasma low-density lipoprotein cholesterol (LDL-C) (p < 0.05) and increased high-density lipoprotein (HDL-C) in rats fed AD, BW, and GB (p < 0.001). The antioxidant and hypolipidemic capacities of grains are quite high, especially those of adlay, buckwheat, and glutinous barley. In conclusion, this study has demonstrated that the whole grains had a cardioprotective effect. This effect was related to several mechanisms that corresponded to lowering plasma lipids, decreasing TBARS, and increasing antioxidant activities.


Subject(s)
Antioxidants/metabolism , Cardiovascular Diseases/prevention & control , Edible Grain , Lipids/blood , Obesity/complications , Obesity/diet therapy , Animals , Aorta/pathology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/pathology , Coix , Diet, High-Fat , Fagopyrum , Gastrointestinal Transit , Hordeum , Liver/chemistry , Male , Obesity/metabolism , Oryza , Oxidative Stress , Rats , Rats, Sprague-Dawley , Thiobarbituric Acid Reactive Substances/analysis
14.
Nutr Res Pract ; 6(3): 208-12, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22808344

ABSTRACT

In the present study, we examined whether four grains including adlay (AD), buckwheat (BW), glutinous barley (GB), and white rice (WR) affect the duration of food residence in the gastrointestinal tract and hepatic enzyme activities in rats fed different combinations of the grains. The rats were raised for 4 weeks on a high fat diet based on the American Institute of Nutrition-93 (AIN-93G) diets containing 1% cholesterol and 20% dietary lipids. Forty male rats were divided into four groups and raised for 4 weeks with a diet containing one of the grains. Corresponding to the dietary fiber contents of the experimental grains, gut transit time was shortest in the rats fed GB and increased in the order of BW, AD, and WR. In addition, the accumulated shortest transit time occurred in the GB group. Gut transit time affected weight gain and major organ weight, as it was closely related to the absorption of nutrients. The level of thiobarbituric acid reactive substance (TBARS) in liver was higher in rats fed WR, AD, BW, and GB, indicating that the other grains decreased oxidative stress in vivo more than WR. Glutathione, glutathione peroxidase, and glutathione S-transferase levels in the AD, BW, and GB groups were significantly higher than those in the WR group. In conclusion, reduced colonic transit time has been implicated in reducing the incidence of colon cancer, as evidenced by populations consuming diets rich in fiber. Whole grains such as AD, BW, and GB may contribute to a significant supply of antioxidants to prevent oxidative stress if they are consumed in large amounts.

15.
ACS Nano ; 6(6): 5627-34, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22559875

ABSTRACT

Nanocrystalline cadmium selenide (nc-CdSe) was electrodeposited within a sub-50 nm gold nanogap, prepared by feedback-controlled electromigration, to form a photoconductive metal-semiconductor-metal nanojunction. Both gap formation and electrodeposition were rapid and automated. The electrodeposited nc-CdSe was stoichiometric, single cubic phase with a mean grain diameter of ∼7 nm. Optical absorption, photoluminescence, and the spectral photoconductivity response of the nc-CdSe were all dominated by band-edge transitions. The photoconductivity of these nc-CdSe-filled gold nanogaps was characterized by a detectivity of 6.9 × 10(10) Jones and a photosensitivity of 500. These devices also demonstrated a maximum photoconductive gain of ∼45 and response and recovery times below 2 µs, corresponding to a 3 dB bandwidth of at least 175 kHz.


Subject(s)
Nanoparticles/chemistry , Nanoparticles/radiation effects , Photometry/methods , Semiconductors , Electric Conductivity , Light , Materials Testing , Radiation Dosage
16.
Eur J Emerg Med ; 18(3): 176-8, 2011 Jun.
Article in English | MEDLINE | ID: mdl-20881843

ABSTRACT

This report introduces and discusses the present state of the helicopter emergency medical services (HEMS) in the metropolitan area of South Korea. The data of patients transported by HEMS from April 2007 to June 2009 were provided by Seoul Metropolitan Fire and Disaster Management Department. The data of patients subsequently transported to Korea University Guro Hospital were analyzed. During the study period, 725 emergency rescue calls were dispatched and 703 patients were rescued, of which 562 patients were judged by an emergency medical technician to be in a nonemergent condition and were referred to ground emergency medical services and 141 patients were judged as having an emergent situation and were directly transported to a nearby hospital. The data of patients who were transported to Korea University Guro Hospital by HEMS were as follows. The mean age was 51.7±12.1 years; 75.6% were male patients; 28 patients (68.3%) were traumatically injured; the mean of the injury severity score was 13.5±14.7, and 13 patients (46.4%) had an injury severity score of more than 15. No procedures other than basic life support were performed by the emergency medical technicians during transport. The role of HEMS in South Korea is limited to transporting injured patients from locations that cannot be approached by ground emergency medical services. Even though HEMS is essential considering the local mountainous geography of Seoul, Korea, overutilization of HEMS is still suspected in the metropolitan area.


Subject(s)
Aircraft/statistics & numerical data , Delivery of Health Care/organization & administration , Emergency Service, Hospital/organization & administration , Urban Population/statistics & numerical data , Wounds and Injuries , Air Ambulances/statistics & numerical data , Emergency Service, Hospital/statistics & numerical data , Female , Health Services Accessibility , Humans , Injury Severity Score , Male , Middle Aged , Republic of Korea
17.
J Korean Acad Nurs ; 41(6): 750-7, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22310859

ABSTRACT

PURPOSE: Cost-benefit analysis is one of the most commonly used economic evaluation methods, which helps to inform the economic value of a program to decision makers. However, the selection of a correct benefit estimation method remains critical for accurate cost-benefit analysis. This paper compared benefit estimations among three different benefit estimation models. METHODS: Data from community-based chronic hypertension management programs in a city in South Korea were used. Three different benefit estimation methods were compared. The first was a standard deterministic estimation model; second, a repeated-measures deterministic estimation model; and third, a transitional probability estimation model. RESULTS: The estimated net benefit of the three different methods were $1,273.01, $-3,749.42, and $-5,122.55 respectively. CONCLUSION: The transitional probability estimation model showed the most correct and realistic benefit estimation, as it traced possible paths of changing status between time points and it accounted for both positive and negative benefits.


Subject(s)
Cost-Benefit Analysis/methods , Hypertension/therapy , Models, Statistical , Adult , Aged , Blood Pressure , Chronic Disease , Databases, Factual , Female , Humans , Hypertension/economics , Male , Middle Aged , Program Evaluation
18.
Int J Vitam Nutr Res ; 80(2): 87-96, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20803423

ABSTRACT

The purpose of this study was to investigate whether the genetic polymorphisms of the uncoupling protein 1 (UCP1) and beta 3 adrenergic receptor (beta3-AR) were associated with differences in weight loss and lipid profiles in obese premenopausal women exposed to low-calorie meal replacements over a period of six weeks. Forty women between the ages of 20 and 35 were randomly divided into two groups, each of which consumed one of two low-calorie meal replacements containing either white rice or mixed rice. Although body weight, body mass index (BMI), blood glucose concentration, triglycerides, total cholesterol (TC), and high-density lipoprotein cholesterol (HDL-C) were not significantly different by the UCP1 genotype in the white rice group, there were significant differences in body weight (p = 0.041), BMI (p = 0.027), and blood glucose concentration (p = 0.047) between carriers and non-carriers of the G allele in the mixed rice group after the six-week meal replacement intervention. The beta3-AR polymorphism showed no apparent affect on these parameters. Dietary fiber affects weight gain since it is closely related with absorption of nutrients. As a result, the AA type UCP1 genotype produced significant weight loss in the mixed rice group, but not in the white rice group.


Subject(s)
Ion Channels/genetics , Lipids/blood , Mitochondrial Proteins/genetics , Obesity/blood , Polymorphism, Genetic/genetics , Receptors, Adrenergic, beta-3/genetics , Weight Loss/genetics , Adult , Blood Glucose , Body Mass Index , Body Weight , Diet, Reducing/methods , Dietary Fiber , Female , Humans , Ion Channels/blood , Lipids/genetics , Mitochondrial Proteins/blood , Obesity/genetics , Oryza , Receptors, Adrenergic, beta-3/blood , Uncoupling Protein 1 , Young Adult
19.
J Korean Med Sci ; 24(5): 975-8, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19795004

ABSTRACT

Drug-induced neutropenia (DIN), particularly that in which antibiotic-dependent antineutrophil antibodies have been detected, is a rare disorder. We report the case of a child with pneumococcal pneumonia, who experienced severe neutropenia during various antibiotic treatments. We detected 4 kinds (cefotaxim, augmentin, vancomycin, and tobramycin) of antibiotic-dependent antineutrophil antibodies by using the mixed passive hemagglutination assay (MPHA) technique with this child.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Antibodies, Antineutrophil Cytoplasmic/blood , Neutropenia/diagnosis , Pneumonia, Pneumococcal/drug therapy , Antibodies, Antineutrophil Cytoplasmic/immunology , Autoantibodies/blood , Autoantibodies/immunology , Drug Therapy, Combination , Humans , Infant , Male , Neutropenia/chemically induced , Pneumonia, Pneumococcal/complications , Tomography, X-Ray Computed
20.
Nano Lett ; 9(5): 2133-8, 2009 May.
Article in English | MEDLINE | ID: mdl-19366192

ABSTRACT

A protocol is described for forming reconnectable sub-5 nm nanogaps in single ultralong (>100 microm) gold nanowires fabricated by lithographically patterned nanowire electrodeposition (LPNE). During an initial computer-controlled electromigration process, gold nanowires with a rectangular cross-section were transformed by the formation of a constriction at a single point along the 250 microm length of the nanowire, and within this constriction a nanogap of width <5 nm. After this initial nanogap formation, 42% (19 of 45) of the gaps could be reconnected by applying a voltage ramp, restoring the electrical resistance of the original nanowire to within 10%. The voltage threshold for nanogap reconnection was narrowly distributed across multiple wires and nanogaps and in the range from 2 to 3 V. Using voltage programming, it was possible to cycle between the open and closed states for some nanogaps more than 100 times. We propose that the mechanism for reconnection involves the field evaporation of gold, qualitatively as observed previously for metal transfer from the tip of a scanning tunneling microscope.

SELECTION OF CITATIONS
SEARCH DETAIL
...