Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Chromatogr A ; 1218(43): 7796-803, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-21930277

ABSTRACT

The energetics of lysozyme adsorption on aminopropyl-grafted MCF silica (MCF-NH2) are compared to the trends observed during lysozyme adsorption on native MCF silica using flow microcalorimetry (FMC). Surface modification on MCF silica affects adsorption energetics significantly. All thermograms consist of two initial exothermic peaks and one later endothermic peak, but the heat signal trends of MCF-NH2 are opposite from those observed for adsorption onto native MCF silica in salt solutions of sodium acetate and sodium sulfate. At low ionic strength (0.01 M), LYS adsorption onto MCF-NH2 was accompanied by a large exotherm followed by a desorption endotherm. With increasing ionic strength (0.1 and 3.01 M), the magnitude of the thermal signal decreased and the total process became less exothermic. Also a higher protein loading of 14 µmol g(-1) was obtained at low ionic strength in batch adsorption isotherm measurements. Taken together, the FMC thermograms and batch adsorption isotherms reveal that MCF-NH2 has the nature of an ion exchange adsorbent, even though lysozyme and the aminopropyl ligands have like net charges at the adsorption pH. Reduced electrostatic interaction, reduced Debye length, and increased adsorption-site competition attenuate exothermicity at higher ionic strengths. Thermograms from flow microcalorimetry (FMC) give rich insight into the mechanisms of protein adsorption. A two-step adsorption mechanism is proposed in which negatively charged surface amino acid side chains on the lysozyme surface make an initial attachment to surface aminopropyl ligands by electrostatic interaction (low ionic strength) or van der Waals interaction (high ionic strength). Secondary attachments take place between protruding amino acid side chains and silanol groups on the silica surface. The reduced secondary adsorption heat is attributed to the inhibitory effect of the enhanced steric barrier of aminopropyl group on MCF silica.


Subject(s)
Amines/chemistry , Models, Chemical , Muramidase/chemistry , Proteins/chemistry , Silicon Dioxide/chemistry , Adsorption , Amines/metabolism , Animals , Calorimetry, Differential Scanning , Chickens , Hydrophobic and Hydrophilic Interactions , Muramidase/metabolism , Osmolar Concentration , Proteins/metabolism , Sodium Acetate/chemistry , Sulfates/chemistry , Thermodynamics , Thermogravimetry
3.
J Chromatogr A ; 1218(38): 6697-704, 2011 Sep 23.
Article in English | MEDLINE | ID: mdl-21835415

ABSTRACT

The heat of lysozyme adsorption on mesostructured cellular foam (MCF) silica was measured using flow microcalorimetry (FMC) to investigate the influence of a neutral salt, sodium sulfate. At concentrations up to 0.5 M sodium sulfate, a complex initial exotherm was followed by an endotherm. Protein surface coverage, the magnitudes of the exothermic heat signals and the magnitudes of the net heat of adsorption increased with sodium sulfate concentration. These observations suggest that electrostatic interactions are the principal driving force at low ionic strengths; van der Waals interactions become dominant at higher salt concentrations. Each exotherm could be deconvoluted into two exotherms, indicating multiple modes of lysozyme attachment to the silica surface. The endothermic peak, associated with protein desorption, disappeared at the highest sodium sulfate concentration (1.0 M), indicating irreversible adsorption of the protein on the MCF silica surface. The data are consistent with an adsorption mechanism in which the initial attachment of lysozyme to the surface is followed by a reorientation and formation of a secondary or stronger attachment to the surface.


Subject(s)
Muramidase/chemistry , Silicon Dioxide/chemistry , Sulfates/chemistry , Adsorption , Animals , Chickens , Hydrogen-Ion Concentration , Osmolar Concentration , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...