Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 12(2)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38399681

ABSTRACT

Marine virus diversity and their relationships with their hosts in the marine environment remain unclear. This study investigated the co-occurrence of marine DNA bacteriophages (phages) and bacteria in the sub-Arctic area of Kongsfjorden Bay in Svalbard (Norway) in April and June 2018 using metagenomics tools. Of the marine viruses identified, 48-81% were bacteriophages of the families Myoviridae, Siphoviridae, and Podoviridae. Puniceispirillum phage HMO-2011 was dominant (7.61%) in April, and Puniceispirillum phage HMO-2011 (3.32%) and Pelagibacter phage HTVC008M (3.28%) were dominant in June. Gammaproteobacteria (58%), including Eionea flava (14.3%) and Pseudomonas sabulinigri (12.2%), were dominant in April, whereas Alphaproteobacteria (87%), including Sulfitobacter profundi (51.5%) and Loktanella acticola (32.4%), were dominant in June. The alpha diversity of the bacteriophages and bacterial communities exhibited opposite patterns. The diversity of the bacterial community was higher in April and lower in June. Changes in water temperature and light can influence the relationship between bacteria and bacteriophages.

2.
Int J Mol Sci ; 24(17)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37686367

ABSTRACT

Understanding marine bacterioplankton composition and distribution is necessary for improving predictions of ecosystem responses to environmental change. Here, we used 16S rRNA metabarcoding to investigate marine bacterioplankton diversity and identify potential pathogenic bacteria in seawater samples collected in March, May, September, and December 2013 from two sites near Jeju Island, South Korea. We identified 1343 operational taxonomic units (OTUs) and observed that community diversity varied between months. Alpha- and Gamma-proteobacteria were the most abundant classes, and in all months, the predominant genera were Candidatus Pelagibacter, Leisingera, and Citromicrobium. The highest number of OTUs was observed in September, and Vibrio (7.80%), Pseudoalteromonas (6.53%), and Citromicrobium (6.16%) showed higher relative abundances or were detected only in this month. Water temperature and salinity significantly affected bacterial distribution, and these conditions, characteristic of September, were adverse for Aestuariibacter but favored Citromicrobium. Potentially pathogenic bacteria, among which Vibrio (28 OTUs) and Pseudoalteromonas (six OTUs) were the most abundant in September, were detected in 49 OTUs, and their abundances were significantly correlated with water temperature, increasing rapidly in September, the warmest month. These findings suggest that monthly temperature and salinity variations affect marine bacterioplankton diversity and potential pathogen abundance.


Subject(s)
Alteromonadaceae , Pseudoalteromonas , Rhodobacteraceae , Sphingomonadaceae , Ecosystem , RNA, Ribosomal, 16S/genetics , Seawater , Water , Republic of Korea , Aquatic Organisms , Pseudoalteromonas/genetics
3.
Mar Pollut Bull ; 193: 115149, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37336046

ABSTRACT

This study employed 16S rRNA metabarcoding to establish the diversity of prokaryotic communities and specific characteristics of potentially pathogenic prokaryotic primary colonizers of four plastic materials (EPS, expanded polystyrene; PE, polyethylene; PP, polypropylene; and PET, polyethylene terephthalate). Bacteria inhabiting plastic and seawater differ; thus, distinct changes in the attached prokaryotic community were observed over an exposure time of 21 days, specifically on Days 3, 6, 9, and 12-21. Frist colonizers were Gammaproteobacteria and Alphaproteobacteria; Bacilli and Clostridia represented secondary colonizers. On Day 3, Pseudoalteromonas had a relative abundance >80 %; whereas, the prevalence of Vibrio spp. (potentially pathogenic prokaryotes) increased rapidly on Days 6 and 9. However, after Day 12, the prevalence of other potential pathogens, namely, Clostridium spp., steadily increased. Despite the diversity of the plastic surfaces, attached prokaryotes changed over time instead of showing similar adherent diversity in all plastic materials.


Subject(s)
Plastics , Polypropylenes , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Seawater/microbiology , Firmicutes/genetics
4.
Viruses ; 15(6)2023 05 31.
Article in English | MEDLINE | ID: mdl-37376592

ABSTRACT

Despite their abundance and ecological importance, little is known about the diversity of marine viruses, in part because most cannot be cultured in the laboratory. Here, we used high-throughput viral metagenomics of uncultivated viruses to investigate the dynamics of DNA viruses in tropical seawater sampled from Chuuk State, Federated States of Micronesia, in March, June, and December 2014. Among the identified viruses, 71-79% were bacteriophages belonging to the families Myoviridae, Siphoviridae, and Podoviridae (Caudoviriales), listed in order of abundance at all sampling times. Although the measured environmental factors (temperature, salinity, and pH) remained unchanged in the seawater over time, viral dynamics changed. The proportion of cyanophages (34.7%) was highest in June, whereas the proportion of mimiviruses, phycodnaviruses, and other nucleo-cytoplasmic large DNA viruses (NCLDVs) was higher in March and December. Although host species were not analysed, the dramatic viral community change observed in June was likely due to changes in the abundance of cyanophage-infected cyanobacteria, whereas that in NCLDVs was likely due to the abundance of potential eukaryote-infected hosts. These results serve as a basis for comparative analyses of other marine viral communities, and guide policy-making when considering marine life care in Chuuk State.


Subject(s)
Bacteriophages , Viruses , Humans , Seawater , DNA Viruses/genetics , Bacteriophages/genetics , Viruses/genetics , DNA , Phylogeny
5.
Harmful Algae ; 122: 102371, 2023 02.
Article in English | MEDLINE | ID: mdl-36754457

ABSTRACT

To understand the co-variance between common free-living bacteria and Cochlodinium polykrikoides harmful algal blooms (HABs) and their metabolic functions, we investigated 110 sampling sites in the Southern Sea of South Korea. These sampling sites were divided into three groups based on environmental factors and phytoplankton data with a similarity of 85% using non-metric multidimensional scaling. One group represented high-severity C. polykrikoides blooms, while the other two represented low-severity or no blooms. In high-severity HABs, inorganic phosphorous and dissolved organic carbon concentrations were strongly correlated with C. polykrikoides density (p < 0.01). This may reflect the changes in biochemical cycling due to inorganic and organic substrates released by HAB cells (or by cell destruction). Furthermore, 88 common bacterial operational taxonomic units (OTUs, with mean relative abundance > 1%) were identified. These included Gammaproteobacteria (36 OTUs), Flavobacteriia (24), Alphaproteobacteria (18), and other taxa (11). When C. polykrikoides blooms intensified, the relative abundances of Gammaproteobacteria also increased. OTU #030 (Flavicella sp., Flavobacteria, 96%) was positively correlated with C. polykrikoides abundance (r = 0.77, p < 0.001). Functional analysis based on the dominant bacterial OTUs revealed that chemoheterotrophy-related functions were more common in high-severity sites of HABs than in other groups. Therefore, the occurrence of HABs highlighted their interactions with bacteria and affected the bacterial community structure and metabolic functions.


Subject(s)
Dinoflagellida , Harmful Algal Bloom , Bacteria , Phytoplankton , Republic of Korea
6.
Microorganisms ; 11(1)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36677461

ABSTRACT

Nucleocytoplasmic large DNA viruses (NCLDVs) infect various marine eukaryotes. However, little is known about NCLDV diversity and their relationships with eukaryotic hosts in marine environments, the elucidation of which will advance the current understanding of marine ecosystems. This study characterizes the interplay between NCLDVs and the eukaryotic plankton community (EPC) in the sub-Arctic area using metagenomics and metabarcoding to investigate NCLDVs and EPC, respectively, in the Kongsfjorden ecosystem of Svalbard (Norway) in April and June 2018. Gyrodinium helveticum (Dinophyceae) is the most prevalent eukaryotic taxon in the EPC in April, during which time Mimiviridae (31.8%), Poxviridae (25.1%), Phycodnaviridae (14.7%) and Pandoraviridae (13.1%) predominate. However, in June, the predominant taxon is Aureococcus anophagefferens (Pelagophyceae), and the NCLDVs, Poxviridae (32.9%), Mimiviridae (29.1%), and Phycodnaviridae (18.5%) appear in higher proportions with an increase in Pelagophyceae, Bacillariophyceae, and Chlorophyta groups. Thus, differences in NCLDVs may be caused by changes in EPC composition in response to environmental changes, such as increases in water temperature and light intensity. Taken together, these findings are particularly relevant considering the anticipated impact of NCLDV-induced EPC control mechanisms on polar regions and, therefore, improve the understanding of the Sub-Arctic Kongsfjorden ecosystem.

SELECTION OF CITATIONS
SEARCH DETAIL
...