Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(48): 56285-56292, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37991738

ABSTRACT

Soft actuators based on liquid crystalline elastomers (LCEs) are captivating significant interest because of their unique properties combining the programmable liquid crystalline molecular order and elasticity of polymeric materials. For practical applications, the ability to perform multimodal shape changes in a single LCE actuator at a subsecond level is a bottleneck. Here, we fabricate a monodomain LCE powered by electrostatic force, which enables fast multidirectional bending, oscillation, rotation, and complex actuation with a high degree of freedom. By tuning the dielectric constant and resistivity in LCE gels, a complete cycle of oscillation and rotation only takes 0.1 s. In addition, monodomain actuators exhibit anisotropic actuation behaviors that promise a more complex deployment in a potential electromechanical system. The presented study will pave the way for electrostatically controllable isothermal manipulation for a fast and multimode soft actuator.

2.
Small ; 17(23): e2100910, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33938152

ABSTRACT

Liquid crystal elastomers (LCEs) are broadly recognized as programmable actuating materials that are responsive to external stimuli, typically heat or light. Yet, soft LCEs that respond to changes in environmental humidity are not reported, except a few examples based on rigid liquid crystal networks with limited processing. Herein, a new class of highly deformable hygroscopic LCE actuators that can be prepared by versatile processing methods, including surface alignment as well as 3D printing is presented. The dimethylamino-functionalized LCE is prepared by the aza-Michael addition reaction between a reactive LC monomer and N,N'-dimethylethylenediamine as a chain extender, followed by photopolymerization. The humidity-responsive properties are introduced by activating one of the LCE surfaces with an acidic solution, which generates cations on the surface and provides asymmetric hydrophilicity to the LCE. The resulting humidity-responsive LCE undergoes programmed and reversible hygroscopic actuation, and its shape transformation can be directed by the cut angle with respect to a nematic director or by localizing activation regions in the LCE. Most importantly, various hygroscopic LCE actuators, including (porous) bilayers, a flower, a concentric square array, and a soft gripper, are successfully fabricated by using LC inks in UV-assisted direct-ink-writing-based 3D printing.

SELECTION OF CITATIONS
SEARCH DETAIL
...