Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Respir Crit Care Med ; 201(1): 95-106, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31322420

ABSTRACT

Rationale: Diagnosis and monitoring of patients with pulmonary artery hypertension (PAH) is currently difficult.Objectives: We aimed to develop a noninvasive imaging modality for PAH that tracks the infiltration of macrophages into the pulmonary vasculature, using a positron emission tomography (PET) agent, 68Ga-2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) mannosylated human serum albumin (MSA), that targets the mannose receptor (MR).Methods: We induced PAH in rats by monocrotaline injection. Tissue analysis, echocardiography, and 68Ga-NOTA-MSA PET were performed weekly in rats after monocrotaline injection and in those treated with either sildenafil or macitentan. The translational potential of 68Ga-NOTA-MSA PET was explored in patients with PAH.Measurements and Main Results: Gene sets related to macrophages were significantly enriched on whole transcriptome sequencing of the lung tissue in PAH rats. Serial PET images of PAH rats demonstrated increasing uptake of 68Ga-NOTA-MSA in the lung by time that corresponded with the MR-positive macrophage recruitment observed in immunohistochemistry. In sildenafil- or macitentan-treated PAH rats, the infiltration of MR-positive macrophages by histology and the uptake of 68Ga-NOTA-MSA on PET was significantly lower than that of the PAH-only group. The pulmonary uptake of 68Ga-NOTA-MSA was significantly higher in patients with PAH than normal subjects (P = 0.009) or than those with pulmonary hypertension by left heart disease (P = 0.019) (n = 5 per group).Conclusions:68Ga-NOTA-MSA PET can help diagnose PAH and monitor the inflammatory status by imaging the degree of macrophage infiltration into the lung. These observations suggest that 68Ga-NOTA-MSA PET has the potential to be used as a novel noninvasive diagnostic and monitoring tool of PAH.


Subject(s)
Hypertension, Pulmonary/blood , Hypertension, Pulmonary/physiopathology , Inflammation/blood , Inflammation/physiopathology , Pulmonary Artery/physiopathology , Serum Albumin, Human/analysis , Animals , Humans , Hypertension, Pulmonary/diagnosis , Inflammation/diagnosis , Male , Models, Animal , Positron-Emission Tomography/methods , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...