Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 689(1-3): 89-95, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22659584

ABSTRACT

Chlorogenic acid (CGA) has been reported to have various beneficial effects on the cardiovascular and central nervous systems. The purpose of the current study was to investigate whether CGA has protective effects against cerebral ischemia and whether these effects are due to modification of brain edema-related vascular factors. In a rat model of transient middle cerebral artery occlusion (MCAo, 2h of occlusion followed by 22 h of reperfusion), we measured infarct volume and performed behavioral test to evaluate the effects of CGA on brain damage and sensory-motor functional deficits. Brain water content and Evans blue extravasation were measured to evaluate brain edema and blood brain barrier (BBB) damage. Lipid peroxidation (LPO) and the expressions and activities of matrix metalloproteinase (MMP)-2 and MMP-9 were measured to investigate the mechanisms of action. Intraperitoneal injection of CGA (3, 10, and 30 mg/kg) at 0 h and 2h after MCAo dose-dependently reduced infarct volume and sensory-motor functional deficits. It also reduced brain water content and Evans blue extravasation. Mechanistically, CGA reduced LPO and MMPs expressions and activities. These results suggest that CGA reduces brain damage, BBB damage and brain edema by radical scavenging activity and the inhibitory effects on MMP-2 and MMP-9.


Subject(s)
Brain Edema/drug therapy , Brain Ischemia/drug therapy , Chlorogenic Acid/therapeutic use , Disease Models, Animal , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Matrix Metalloproteinase Inhibitors/therapeutic use , Animals , Brain Edema/enzymology , Brain Edema/pathology , Brain Ischemia/enzymology , Brain Ischemia/pathology , Chlorogenic Acid/pharmacology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase Inhibitors/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rats , Rats, Sprague-Dawley
2.
Phytother Res ; 26(10): 1521-7, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22322923

ABSTRACT

Brain oedema is the volumetric increase of brain tissue and is known to be linked to vascular factors, including the blood-brain barrier (BBB) and vascular permeability. Besides neuroprotection, inhibition of brain oedema also can be a method to protect the brain against ischaemic insult. Sesame is reported to have various beneficial effects on the cardiovascular and cerebrovascular systems. The neuroprotective effects of defatted sesame seed extract (DSE) in a transient middle cerebral artery occlusion (tMCAo) rat model were reported previously. The current study was planned to investigate whether the neuroprotective effects of DSE is related to brain oedema. The tMCAo rat model was used to investigate the brain water content (BWC) and Evans blue (EB) leakage. Aquaporin 4 (AQP4), matrix metalloproteinase (MMP)-2 and MMP-9 expressions at 4 and 24 h after ischaemia were analysed. In vitro zymography was performed to investigate the effects on MMPs activities. DSE (30, 100, and 300 mg/kg, p.o.) reduced BWC but not EB leakage. DSE inhibited AQP4 expression at 4 h but not at 24 h after ischaemia. It did not show any effects on MMPs expressions and activities. Therefore, DSE might be effective on brain oedema by AQP4 regulation during the acute phase of ischaemia.


Subject(s)
Aquaporin 4/metabolism , Brain Edema/drug therapy , Ischemic Attack, Transient/drug therapy , Plant Extracts/pharmacology , Seeds/chemistry , Sesamum/chemistry , Animals , Male , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Rats , Rats, Sprague-Dawley
3.
Nanoscale Res Lett ; 7: 47, 2012 Jan 05.
Article in English | MEDLINE | ID: mdl-22222054

ABSTRACT

Three types of Co3O4 nanoparticles are synthesized and characterized as a catalyst for the air electrode of a Li/air battery. The shape and size of the nanoparticles are observed using scanning electron microscopy and transmission electron microscopy analyses. The formation of the Co3O4 phase is confirmed by X-ray diffraction. The electrochemical property of the air electrodes containing Co3O4 nanoparticles is significantly associated with the shape and size of the nanoparticles. It appears that the capacity of electrodes containing villiform-type Co3O4 nanoparticles is superior to that of electrodes containing cube- and flower-type Co3O4 nanoparticles. This is probably due to the sufficient pore spaces of the villiform-type Co3O4 nanoparticles.

4.
Planta Med ; 76(1): 20-6, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19598078

ABSTRACT

Sesame (Sesamum indicum L.) is an important oilseed crop that possesses a wide spectrum of pharmacological activities. Many studies have been conducted to investigate its health-promoting effects. Compared to other plant oils, sesame seed oil is highly stable to oxidation and has been demonstrated to have protective effects against ischemia-reperfusion injury in the rat brain. However; the effects of defatted sesame seeds extract (DSE) have not been studied yet. The purpose of this study was to evaluate the protective effect of DSE against ischemia models. For in vitro ischemia, oxygen-glucose deprivation followed by reoxygenation (OGD-R, 4 h OGD followed by 24 h reoxygenation) in HT22 cells was used to investigate the protective effects on cell death and the inhibitory effects on lipid peroxidation. For in vivo ischemia, the middle cerebral artery occlusion (MCAo, 2 h of MCAo followed by 22 h of reperfusion) rat model was used. Twenty-two h after occlusion the rats were assessed for neurobehavioral deficit and infarct volume. DSE (0.1-10 microg/mL) significantly reduced the cell death and inhibited lipid peroxidation induced by OGD-R. DSE (30, 100 and 300 mg/kg, p.o.) given twice at 0 h and 2 h after onset of ischemia reduced brain infarct volume dose-dependently and improved sensory-motor function. The therapeutic time window of DSE (300 mg/kg, p.o.) was 2 h after MCAo in rats. In conclusion, our results show that DSE may be effective in ischemia models by an antioxidative mechanism.


Subject(s)
Brain Infarction/drug therapy , Ischemia/drug therapy , Neurons/drug effects , Neuroprotective Agents/therapeutic use , Plant Extracts/therapeutic use , Reperfusion Injury/prevention & control , Sesamum , Animals , Behavior, Animal/drug effects , Brain/drug effects , Cell Death/drug effects , Cell Line , Cerebral Arteries , Disease Models, Animal , Dose-Response Relationship, Drug , Glucose , Lipid Peroxidation/drug effects , Male , Neuroprotective Agents/pharmacology , Oxygen , Phytotherapy , Plant Extracts/pharmacology , Rats , Rats, Sprague-Dawley , Seeds
5.
Biosci Biotechnol Biochem ; 72(6): 1626-7, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18540089

ABSTRACT

A new anthraquinone derivative, named anthrasesamone F, was isolated from the seeds of Sesamum indicum. Its structure was determined to be (Z)-6,7-dihydroxy-2-(6-hydroxy-4-methyl-3-pentenyl)anthraquinone on the basis of spectroscopic evidence.


Subject(s)
Anthraquinones/chemistry , Anthraquinones/isolation & purification , Sesamum/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Seeds/chemistry
6.
J Agric Food Chem ; 55(5): 1679-85, 2007 Mar 07.
Article in English | MEDLINE | ID: mdl-17288449

ABSTRACT

Near-infrared reflectance spectroscopy (NIRS) was used as a rapid and nondestructive method to determine the oil content and fatty acid composition in intact seeds of perilla [Perilla frutescens var. japonica (Hassk.) Hara] germplasms in Korea. A total of 397 samples (about 2 g of intact seeds) were scanned in the reflectance mode of a scanning monochromator, and the reference values for the oil content and fatty acid composition were measured by gravimetric method and gas-liquid chromatography, respectively. Calibration equations for oil and individual fatty acids were developed using modified partial least-squares regression with internal cross validation (n = 297). The equations for oil and oleic and linolenic acid had lower standard errors of cross-validation (SECV), higher R2 (coefficient of determination in calibration), and higher ratio of unexplained variance divided by variance (1-VR) values than those for palmitic, stearic, and linoleic acid. Prediction of an external validation set (n = 100) showed significant correlation between reference values and NIRS estimated values based on the standard error of prediction (SEP), r2 (coefficient of determination in prediction), and the ratio of standard deviation (SD) of reference data to SEP. The models for oil content and major fatty acids, oleic and linolenic acid, had relatively higher values of SD/SEP(C) and r2 (more than 3.0 and 0.9, respectively), thereby characterizing those equations as having good quantitative information, whereas those of palmitic, stearic, and linoleic acid had lower values (below 2.0 and 0.7, respectively), unsuitable for screening purposes. The results indicated that NIRS could be used to rapidly determine oil content and fatty acid composition (oleic and linolenic acid) in perilla seeds in the breeding programs for development of high-quality perilla oil.


Subject(s)
Fatty Acids/analysis , Perilla/chemistry , Plant Oils/analysis , Seeds/chemistry , Spectroscopy, Near-Infrared , Calibration , Reproducibility of Results
7.
J Plant Physiol ; 164(9): 1134-43, 2007 Sep.
Article in English | MEDLINE | ID: mdl-16904233

ABSTRACT

Sesame (Sesamum indicum L.) is one of the most important oilseed crops, having seeds and oil that are highly valued as a traditional health food. The objective of this study was to evaluate leaf cuticular wax constituents across a diverse selection of sesame cultivars, and the responses of these waxes to drought-induced wilting. Water-deficit was imposed on 18 sesame cultivars by withholding irrigation for 15d during the post-flowering stage, and the effect on seed yield and leaf waxes compared with a well-watered control. Leaf cuticular waxes were dominated by alkanes (59% of total wax), with aldehydes being the next-most abundant class. Compared to well-irrigated plants, drought treatment caused an increase in wax amount on most cultivars, with only three cultivars having a notable reduction. When expressed as an average across all cultivars, drought treatment caused a 30% increase in total wax amount, with a 34% increase in total alkanes, a 13% increase in aldehydes, and a 28% increase in the total of unknowns. In all cultivars, the major alkane constituents were the C27, C29, C31, C33, and C35 homologs, whereas the major aldehydes were the C30, C32, and C34 homologs, and drought exposure had only minor effects on the chain length distribution within these and other wax classes. Drought treatments caused a large decrease in seed yield per plant, but did not affect the mean weight of individual seeds, showing that sesame responds to post-flowering drought by reducing seed numbers, but not seed size. Seed yield was inversely correlated with the total wax amount (-0.466*), indicating that drought induction of leaf wax deposition does not contribute directly to seed set. Further studies are needed to elucidate the ecological role for induction of the alkane metabolic pathway by drought in regulating sesame plant survival and seed development in water-limiting environments.


Subject(s)
Plant Epidermis/metabolism , Plant Leaves/metabolism , Sesamum/metabolism , Water/metabolism , Waxes/metabolism , Seeds/metabolism , Waxes/chemistry
8.
J Agric Food Chem ; 54(13): 4544-50, 2006 Jun 28.
Article in English | MEDLINE | ID: mdl-16786996

ABSTRACT

Sesame (Sesamum indicum L.) contains abundant lignans including lipid-soluble lignans (sesamin and sesamolin) and water-soluble lignan glycosides (sesaminol triglucoside and sesaminol diglucoside) related to antioxidative activity. In this study, near infrared reflectance spectroscopy (NIRS) was used to develop a rapid and nondestructive method for the determination of lignan contents on intact sesame seeds. Ninety-three intact seeds were scanned in the reflectance mode of a scanning monochromator. This scanning procedure did not require the pulverization of samples, allowing each analysis to be completed within minutes. Reference values for lignan contents were obtained by high-performance liquid chromatography analysis. Calibration equations for lignans (sesamin and sesamolin) and lignan glycosides (sesaminol triglucoside and sesaminol diglucoside) contents were developed using modified partial least squares regression with internal cross-validation (n = 63). The equations obtained had low standard errors of cross-validation and moderate R2 (coefficient of determination in calibration). The prediction of an external validation set (n = 30) showed significant correlation between reference values and NIRS predicted values based on the SEP (standard error of prediction), bias, and r2 (coefficient of determination in prediction). The models developed in this study had relatively higher values (more than 2.0) of SD/SEP(C) for all lignans and lignan glycosides except for sesaminol diglucoside, which had a minor amount, indicating good correlation between the reference and the NIRS estimate. The results showed that NIRS, a nondestructive screening method, could be used to rapidly determine lignan and lignan glycoside contents in the breeding programs for high quality sesame.


Subject(s)
Glycosides/analysis , Lignans/analysis , Seeds/chemistry , Sesamum/chemistry , Spectroscopy, Near-Infrared , Calibration , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...