Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6370, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37828054

ABSTRACT

Palmitic acid (PA) is the most common fatty acid in humans and mediates palmitoylation through its conversion into palmitoyl coenzyme A. Although palmitoylation affects many proteins, its pathophysiological functions are only partially understood. Here we demonstrate that PA acts as a molecular checkpoint of lipid reprogramming in HepG2 and Hep3B cells. The zinc finger DHHC-type palmitoyltransferase 23 (ZDHHC23) mediates the palmitoylation of plant homeodomain finger protein 2 (PHF2), subsequently enhancing ubiquitin-dependent degradation of PHF2. This study also reveals that PHF2 functions as a tumor suppressor by acting as an E3 ubiquitin ligase of sterol regulatory element-binding protein 1c (SREBP1c), a master transcription factor of lipogenesis. PHF2 directly destabilizes SREBP1c and reduces SREBP1c-dependent lipogenesis. Notably, SREBP1c increases free fatty acids in hepatocellular carcinoma (HCC) cells, and the consequent PA induction triggers the PHF2/SREBP1c axis. Since PA seems central to activating this axis, we suggest that levels of dietary PA should be carefully monitored in patients with HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Lipid Metabolism/physiology , Lipoylation , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Liver Neoplasms/metabolism , Ubiquitination , Homeodomain Proteins/metabolism
2.
Front Immunol ; 14: 1064900, 2023.
Article in English | MEDLINE | ID: mdl-36793721

ABSTRACT

Objectives: To investigate whether and how inflammatory disease in the intestine influences the development of arthritis, considering that organ-to-organ communication is associated with many physiological and pathological events. Methods: First, mice were given drinking water containing dextran sodium sulfate (DSS) and then subjected to inflammatory arthritis. We compared the phenotypic symptoms between the cohoused and separately-housed mice. Next, donor mice were divided into DSS-treated and untreated groups and then cohoused with recipient mice. Arthritis was then induced in the recipients. The fecal microbiome was analyzed by 16S rRNA amplicon sequencing. We obtained type strains of the candidate bacteria and generated propionate-deficient mutant bacteria. Short-chain fatty acids were measured in the bacterial culture supernatant, serum, feces, and cecum contents using gas chromatography-mass spectrometry. Mice fed with candidate and mutant bacteria were subjected to inflammatory arthritis. Results: Contrary to expectations, the mice treated with DSS exhibited fewer symptoms of inflammatory arthritis. Intriguingly, the gut microbiota contributes, at least in part, to the improvement of colitis-mediated arthritis. Among the altered microorganisms, Bacteroides vulgatus and its higher taxonomic ranks were enriched in the DSS-treated mice. B. vulgatus, B. caccae, and B. thetaiotaomicron exerted anti-arthritic effects. Propionate production deficiency further prevented the protective effect of B. thetaiotaomicron on arthritis. Conclusions: We suggest a novel relationship between the gut and joints and an important role of the gut microbiota as communicators. Moreover, the propionate-producing Bacteroides species examined in this study may be a potential candidate for developing effective treatments for inflammatory arthritis.


Subject(s)
Colitis , Propionates , Mice , Animals , Propionates/pharmacology , RNA, Ribosomal, 16S/genetics , Colitis/pathology , Feces/microbiology , Bacteria/genetics , Bacteroides/genetics
3.
Metabolites ; 12(6)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35736458

ABSTRACT

Gut microbial metabolites, short-chain fatty acids (SCFAs), are found at multiple locations in the host body and are identified as important metabolites in gut microbiome-associated diseases. Quantifying SCFAs in diverse biological samples is important to understand their roles in host health. This study developed an accurate SCFA quantification method by performing gas chromatography-mass spectrometry (GC/MS) in human plasma, serum, feces, and mouse cecum tissue. The samples were acidified with hydrochloric acid, and the SCFAs were extracted using methyl tert-butyl ether. In this method, distilled water was selected as a surrogate matrix for the quantification of SCFAs in target biological samples. The method was validated in terms of linearity, parallelism, precision, recovery, and matrix effect. The developed method was further applied in target biological samples. In conclusion, this optimized method can be used as a simultaneous SCFA quantification method in diverse biological samples.

4.
Biomaterials ; 269: 120622, 2021 02.
Article in English | MEDLINE | ID: mdl-33385686

ABSTRACT

Although obesity is a newly considered risk factor for cancer, the mechanisms by which adipocyte-derived metabolites accelerate cancer malignancy have yet to be elucidated. To identify the connection among heterogeneous cell types, conventional methods including Transwell assays or conditioned media (CM) have been used; however, these methods do not fully reflect niche effects in the tumor microenvironment (TME). Here, we established an oxygen permeable polydimethylsiloxane (PDMS)-based three-dimensional (3D) culture system to allow direct attachment between human adipocyte derived stem cells (ADSCs) and cancer cells. By doing so, a physiologically bioactive TME was created, which could be used to reveal further the relationships between different cell types. We found that co-culture of cancer cells with ADSCs resulted in a dispersion phenomenon, and the dispersed spheroid was well matched with the enhanced metastatic potential of cancer cells. Lipid profiling and in vitro migration assays suggested that lipids are the driving force for cancer cell migration via HIF-1α upregulation. In addition, the lipid/HIF-1α axis promoted tumor metastasis in a xenograft mouse model. This study presents an in vitro model of a biomimetic TME and provides new mechanistic insights into the effects of ADSC-released fatty acids on cancer cells as oncometabolites.


Subject(s)
Adipocytes , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lab-On-A-Chip Devices , Lipids , Neoplasms , Animals , Cell Line, Tumor , Cell Movement , Humans , Mice , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...