Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
J Nat Med ; 78(3): 599-607, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38662302

ABSTRACT

In this study, the effects of 3,5,7,3',4'-pentamethoxyflavone (KP1), a major bioactive ingredient isolated from the Kaempferia parviflora rhizomes, on a neurite outgrowth in Neuro2a cells and its mechanism have been investigated. KP1 increased concentration-dependently the percentage of neurite-bearing cells. KP1 showed a remarkable capability to elicit neurite outgrowth in Neuro2a cells, as evidenced by morphological alterations and immunostaining using anti-class III ß-tubulin and anti-NeuN antibodies. KP1 also displayed a higher neurogenic activity than retinoic acid (RA), a promoter of neurite outgrowth in Neuro2a cells. KP1 treatment caused significant elevation in phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38 MAPK) and glycogen synthase kinase-3ß (GSK-3ß). However, KP1-triggered neurite outgrowth was markedly inhibited by treatment with the ERK inhibitor U0126, whereas p38 MAPK inhibitor SB203580 and GSK-3ß inhibitor SB216763 did not influence KP1-induced neurite outgrowth. These results demonstrate that KP1 elicits neurite outgrowth and triggers cell differentiation of Neuro2a cells through ERK signal pathway.


Subject(s)
MAP Kinase Signaling System , Neuronal Outgrowth , Animals , Neuronal Outgrowth/drug effects , Mice , MAP Kinase Signaling System/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Neurites/drug effects , Cell Differentiation/drug effects , Phosphorylation/drug effects , Flavonoids/pharmacology , Flavones/pharmacology , Flavones/chemistry , Cell Line, Tumor , Glycogen Synthase Kinase 3 beta/metabolism , Cell Line
2.
Arch Biochem Biophys ; 750: 109810, 2023 12.
Article in English | MEDLINE | ID: mdl-37939867

ABSTRACT

Ganglioside GM3 is a simple monosialoganglioside (NeuAc-Gal-Glc-ceramide) that modulates cell adhesion, proliferation, and differentiation. Previously, we reported isolation of GM3-binding vascular endothelial growth factor receptor and transforming growth factor-ß receptor by the T7 phage display method (Chung et al., 2009; Kim et al., 2013). To further identify novel proteins interacting with GM3, we extended the T7 phage display method in this study. After T7 phage display biopanning combined with immobilized biotin-labeled 3'-sialyllactose prepared on a streptavidin-coated microplate, we isolated 100 candidate sequences from the human lung cDNA library. The most frequently detected clones from the blast analysis were the human nucleolar and coiled-body phosphoprotein 1 (NOLC1) sequences. We initially identified NOLC1 as a molecule that possibly binds to GM3 and confirmed this binding ability using the glutathione S-transferase fusion protein. Herein, we report another GM3-interacting protein, NOLC1, that can be isolated by the T7 phage display method. These results are expected to be helpful for elucidating the functional roles of ganglioside GM3 with NOLC1. When human breast cancer MCF-7 cells were examined for subcellular localization of NOLC1, immunofluorescence of NOLC1 was observed in the intracellular region. In addition, NOLC1 expression was increased in the nucleolus after treatment with the anticancer drug doxorubicin. GM3 and NOLC1 levels in the doxorubicin-treated MCF-7 cells were correlated, indicating possible associations between GM3 and NOLC1. Therefore, direct interactions between carbohydrates and cellular proteins can pave the path for new signaling phenomena in biology.


Subject(s)
Bacteriophage T7 , Breast Neoplasms , Humans , Female , Bacteriophage T7/genetics , Vascular Endothelial Growth Factor A , G(M3) Ganglioside , MCF-7 Cells , Breast Neoplasms/genetics , Doxorubicin , Nuclear Proteins/metabolism , Phosphoproteins
3.
PLoS One ; 18(11): e0293321, 2023.
Article in English | MEDLINE | ID: mdl-37917776

ABSTRACT

In this study, we have firstly elucidated that serum starvation augmented the levels of human GD3 synthase (hST8Sia I) gene and ganglioside GD3 expression as well as bone morphogenic protein-2 and osteocalcin expression during MG-63 cell differentiation using RT-PCR, qPCR, Western blot and immunofluorescence microscopy. To evaluate upregulation of hST8Sia I gene during MG-63 cell differentiation by serum starvation, promoter area of the hST8Sia I gene was functionally analyzed. Promoter analysis using luciferase reporter assay system harboring various constructs of the hST8Sia I gene proved that the cis-acting region at -1146/-646, which includes binding sites of the known transcription factors AP-1, CREB, c-Ets-1 and NF-κB, displays the highest level of promoter activity in response to serum starvation in MG-63 cells. The -731/-722 region, which contains the NF-κB binding site, was proved to be essential for expression of the hST8Sia I gene by serum starvation in MG-63 cells by site-directed mutagenesis, NF-κB inhibition, and chromatin immunoprecipitation (ChIP) assay. Knockdown of hST8Sia I using shRNA suggested that expressions of hST8Sia I and GD3 have no apparent effect on differentiation of MG-63 cells. Moreover, the transcriptional activation of hST8Sia I gene by serum starvation was strongly hindered by SB203580, a p38MAPK inhibitor in MG-63 cells. From these results, it has been suggested that transcription activity of hST8Sia I gene by serum starvation in human osteosarcoma MG-63 cells is regulated by p38MAPK/NF-κB signaling pathway.


Subject(s)
Gene Expression Regulation, Enzymologic , NF-kappa B , Humans , Transcriptional Activation , Up-Regulation , NF-kappa B/metabolism , Cell Differentiation/genetics , Gene Expression
4.
Glycoconj J ; 40(6): 621-630, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37921922

ABSTRACT

In this study we observed that human GD1c/GT1a/GQ1b synthase (hST8Sia V) is particularly expressed in human glioblastoma cells. To address the mechanism regulating human glioblastoma-specific gene expression of the hST8Sia V, after the transcription start site (TSS) was identified by the 5'-rapid amplification of cDNA end with total RNA from human glioblastoma U87MG cells, the 5'-flanking region (2.5 kb) of the hST8Sia V gene was isolated and its promoter activity was examined. By luciferase reporter assay, this 5'-flanking region revealed strong promoter activity in only U-87MG cells, but not in other tissue-derived cancer cells. 5'-deletion mutant analysis showed that the region from -1140 to -494 is crucial for transcription of the hST8Sia V gene in U87MG cells. This region contains the activator protein-1 (AP-1) binding site, the main target of the c-Jun N-terminal kinase (JNK) downstream. The AP-1 binding site at -1043/-1037 was proved to be indispensable for the hST8Sia V gene-specific expression in U87MG cells by site-directed mutagenesis. Moreover, the transcriptional activation of hST8Sia V gene in U87MG cells was strongly inhibited by a specific JNK inhibitor, SP600125. These results suggest that the hST8Sia V gene-specific expression in U87MG cells is controlled by JNK/AP-1 signaling pathway.


Subject(s)
Glioblastoma , Humans , Glioblastoma/genetics , Transcription Factor AP-1/genetics , Promoter Regions, Genetic/genetics , Transcriptional Activation
5.
Genes Genomics ; 45(7): 901-909, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37231294

ABSTRACT

BACKGROUND: In this study, we observed that in human colon carcinoma HCT116 cells mRNA level of the human ß-galactoside α2,6-sialyltransferase (hST6Gal I) was decreased by curcumin. FACS analysis using the α2,6-sialyl-specific lectin (SNA) also showed a noticeable decrease in binding to SNA by curcumin. OBJECTIVE: To investigate the mechanism for curcumin-triggered downregulation of hST6Gal I transcription. METHODS: The mRNA levels of nine kinds of hST genes were assessed by RT-PCR after curcumin was treated in HCT116 cells. The level of hST6Gal I product on cell surface was examined by flow cytometry analysis. Luciferase reporter plasmids with 5'-deleted constructs and mutants of the hST6Gal I promoter were transiently transfected into HCT116 cells, and the luciferase activity was measured after treatment with curcumin. RESULTS: Curcumin led to significant transcriptional repression of the hST6Gal I promoter. Promoter analysis using deletion mutants proved that the - 303 to - 189 region of the hST6Gal I promoter is required for transcriptional repression in response to curcumin. Among putative binding sites for transcription factors IK2, GATA1, TCF12, TAL1/E2A, SPT, and SL1 in this region, by site-directed mutagenesis analysis the TAL/E2A binding site (nucleotides - 266/- 246) was proved to be crucial for curcumin-triggered downregulation of hST6Gal I transcription in HCT116 cells. The transcription activity of hST6Gal I gene in HCT116 cells was markedly suppressed by compound C, an AMP-activated protein kinase (AMPK) inhibitor. CONCLUSION: These indicate that gene expression of hST6Gal I in HCT116 cells is controlled through AMPK/TAL/E2A signal pathway.


Subject(s)
Carcinoma , Colonic Neoplasms , Curcumin , Humans , Curcumin/pharmacology , AMP-Activated Protein Kinases , beta-D-Galactoside alpha 2-6-Sialyltransferase , HCT116 Cells , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , RNA, Messenger/genetics , Luciferases
6.
Front Mol Biosci ; 9: 985648, 2022.
Article in English | MEDLINE | ID: mdl-36172045

ABSTRACT

Human N-acetylgalactosamine-α2,6-sialyltransferase (hST6GalNAc I) is the major enzyme involved in the biosynthesis of sialyl-Tn antigen (sTn), which is known to be expressed in more than 80% of human carcinomas and correlated with poor prognosis in cancer patients. Athough high expression of hST6GalNAc I is associated with augmented proliferation, migration and invasion in various cancer cells, transcriptional mechanism regulating hST6GalNAc I gene expression remains largely unknown. In this study, we found that hST6GalNAc I gene expression was markedly augmented by curcumin in HCT116 human colon carcinoma cells. To understand the molecular mechanism for the upregulation of hST6GalNAc I gene expression by curcumin in HCT116 cells, we first determined the transcriptional start site of hST6GalNAc I gene by 5'-RACE and cloned the proximal hST6GalNAc I 5'-flanking region spanning about 2 kb by PCR. Functional analysis of the hST6GalNAc I 5' flanking region of hST6GalNAc I by sequential 5'-deletion, transient transfection of reporter gene constructs and luciferase reporter assays showed that -378/-136 region is essential for maximal activation of transcription in response to curcumin in HCT 116 cells. This region includes putative binding sites for transcription factors c-Ets-1, NF-1, GATA-1, ER-α, YY1, and GR-α. ChIP analysis and site-directed mutagenesis demonstrated that estrogen receptor α (ER-α) binding site (nucleotides -248/-238) in this region is crucial for hST6GalNAc I gene transcription in response to curcumin stimulation in HCT116 cells. The transcription activity of hST6GalNAc I gene induced by curcumin in HCT116 cells was strongly inhibited by PKC inhibitor (Gö6983) and ERK inhibitor (U0126). These results suggest that curcumin-induced hST6GalNAc I gene expression in HCT116 cells is modulated through PKC/ERKs signal pathway.

7.
Int J Health Geogr ; 20(1): 23, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34034758

ABSTRACT

BACKGROUND: Heatstroke is becoming an increasingly serious threat to outdoor activities, especially, at the time of large events organized during summer, including the Olympic Games or various types of happenings in amusement parks like Disneyland or other popular venues. The risk of heatstroke is naturally affected by a high temperature, but it is also dependent on various other contextual factors such as the presence of shaded areas along traveling routes or the distribution of relief stations. The purpose of the study is to develop a method to reduce the heatstroke risk of pedestrians for large outdoor events by optimizing relief station placement, volume scheduling and route. RESULTS: Our experiments conducted on the planned site of the Tokyo Olympics and simulated during the two weeks of the Olympics schedule indicate that planning routes and setting relief stations with our proposed optimization model could effectively reduce heatstroke risk. Besides, the results show that supply volume scheduling optimization can further reduce the risk of heatstroke. The route with the shortest length may not be the route with the least risk, relief station and physical environment need to be considered and the proposed method can balance these factors. CONCLUSIONS: This study proposed a novel emergency service problem that can be applied in large outdoor event scenarios with multiple walking flows. To solve the problem, an effective method is developed and evaluates the heatstroke risk in outdoor space by utilizing context-aware indicators which are determined by large and heterogeneous data including facilities, road networks and street view images. We propose a Mixed Integer Nonlinear Programming model for optimizing routes of pedestrians, determining the location of relief stations and the supply volume in each relief station. The proposed method can help organizers better prepare for the event and pedestrians participate in the event more safely.


Subject(s)
Emergency Medical Services , Heat Stroke , Pedestrians , Heat Stroke/diagnosis , Heat Stroke/epidemiology , Humans , Travel , Walking
8.
Glycoconj J ; 37(6): 681-690, 2020 12.
Article in English | MEDLINE | ID: mdl-33108606

ABSTRACT

In this study, we found that gene expression of the human ß-galactoside α2,6-sialyltransferase (hST6Gal I) was specifically increased during differentiation of human MG-63 osteoblastic cells by serum starvation (SS). In parallel, a distinct increase in binding to SNA, the α2,6-sialyl-specific lectin, was observed in serum-starved cells, as demonstrated by FACS analysis. 5'-Rapid amplification of cDNA ends analysis demonstrated that the increase of hST6Gal I transcript by SS is mediated by P1 promoter. To elucidate transcriptional regulation of hST6Gal I in SS-induced MG-63 cells, we functionally characterized the P1 promoter region of the hST6Gal I gene. The 5'-deletion analysis of P1 promoter region revealed that the 189 bp upstream region of transcription start site is critical for transcriptional activity of hST6Gal I gene in SS-induced MG-63 cells. This region contains the predicted binding sites for several transcription factors, including AREB6, FOXP1, SIX3, HNF1, YY2, and MOK2. The mutagenesis analysis for these sites and chromatin immunoprecipitation assay demonstrated that the YY2 binding site at -98 to -77 was essential for the SS-induced hST6Gal I gene expression during differentiation of MG-63 cells.


Subject(s)
Antigens, CD/genetics , Cell Differentiation/genetics , Osteoblasts/cytology , Sialyltransferases/genetics , Transcription, Genetic , DNA-Binding Proteins/genetics , Eye Proteins/genetics , Forkhead Transcription Factors/genetics , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Enzymologic/genetics , Homeodomain Proteins/genetics , Humans , Nerve Tissue Proteins/genetics , Osteoblasts/metabolism , Promoter Regions, Genetic/genetics , Repressor Proteins/genetics , Transcription Factors/genetics , Transcription Initiation Site , Zinc Finger E-box-Binding Homeobox 1/genetics , Homeobox Protein SIX3
9.
Article in English | MEDLINE | ID: mdl-30534177

ABSTRACT

Our recent report showed that curcumin, polyphenolic compound isolated from the herb Curcuma longa, upregulated the gene expression of human GD3 synthase (hST8Sia I) responsible for ganglioside GD3 synthesis with autophagy induction in human lung adenocarcinoma A549 cells. In this study, on the contrary to this finding, we demonstrated that curcumin downregulated the gene expression of human GM3 synthase (hST3Gal V) catalyzing ganglioside GM3 synthesis with autophagy induction in human colon carcinoma HCT116 cells. To clarify the mechanism leading to the downregulation of hST3Gal V gene expression in curcumin-treated HCT116 cells, we analyzed the curcumin-inducible promoter of the hST3Gal V gene by luciferase reporter assays. Promoter deletion analysis demonstrated that the -177 to -83 region, which includes putative binding sites for transcription factors NFY, CREB/ATF, SP1, EGR3, and MZF1, acts as the curcumin-responsive promoter of the hST3Gal V gene. Site-directed mutagenesis and chromatin immunoprecipitation analysis demonstrated that the CREB/ATF binding site at -143 is pivotal for curcumin-induced downregulation of hST3Gal V gene in HCT116 cells. The transcriptional activation of hST3Gal V in HCT116 cells was significantly repressed by an inhibitor of AMP-activated protein kinase (AMPK). These results suggest that AMPK signal pathway mediates hST3Gal V gene expression in HCT116 cells.

10.
Int J Mol Sci ; 19(7)2018 Jul 02.
Article in English | MEDLINE | ID: mdl-30004453

ABSTRACT

Curcumin, a natural polyphenolic compound isolated from the plant Curcuma longa, is known to induce autophagy in various cancer cells, including lung cancer. In the present study, we also confirmed by LC3 immunofluorescence and immunoblotting analyses that curcumin triggers autophagy in the human lung adenocarcinoma A549 cell line. In parallel with autophagy induction, the gene expression of human GD3 synthase (hST8Sia I) responsible for ganglioside GD3 synthesis was markedly elevated in response to curcumin in the A549 cells. To investigate the transcriptional activation of hST8Sia I associated with the autophagy formation in curcumin-treated A549 cells, functional characterization of the 5'-flanking region of the hST8Sia I gene was carried out using the luciferase reporter assay system. Deletion analysis demonstrated that the -1146 to -646 region, which includes the putative c-Ets-1, CREB, AP-1, and NF-κB binding sites, functions as the curcumin-responsive promoter of hST8Sia I in A549 cells. The site-directed mutagenesis and chromatin immunoprecipitation assay demonstrated that the NF-κB binding site at -731 to -722 was indispensable for the curcumin-induced hST8Sia I gene expression in A549 cells. Moreover, the transcriptional activation of hST8Sia I by the curcumin A549 cells was strongly inhibited by compound C, an inhibitor of AMP-activated protein kinase (AMPK). These results suggest that curcumin controls hST8Sia I gene expression via AMPK signal pathway in A549 cells.


Subject(s)
Adenocarcinoma/enzymology , Autophagy/drug effects , Curcumin/pharmacology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Lung Neoplasms/enzymology , Neoplasm Proteins/biosynthesis , Sialyltransferases/biosynthesis , A549 Cells , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Enzyme Induction/drug effects , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology
11.
Int J Mol Sci ; 17(8)2016 Aug 02.
Article in English | MEDLINE | ID: mdl-27490539

ABSTRACT

In this research, we firstly demonstrated that physcion, an anthraquinone derivative, specifically increased the expression of the human α2,8-sialyltransferase (hST8Sia VI) gene in SK-N-BE(2)-C human neuroblastoma cells. To establish the mechanism responsible for the up-regulation of hST8Sia VI gene expression in physcion-treated SK-N-BE(2)-C cells, the putative promoter region of the hST8Sia VI gene was functionally characterized. Promoter analysis with serially truncated fragments of the 5'-flanking region showed that the region between -320 and -240 is crucial for physcion-induced transcription of hST8Sia VI in SK-N-BE(2)-C cells. Putative binding sites for transcription factors Pax-5 and NF-Y are located at this region. The Pax-5 binding site at -262 to -256 was essential for the expression of the hST8Sia VI gene by physcion in SK-N-BE(2)-C cells. Moreover, the transcription of hST8Sia VI induced by physcion in SK-N-BE(2)-C cells was inhibited by extracellular signal-regulated protein kinase (ERK) inhibitor U0126 and p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580, but not c-Jun N-terminal kinase (JNK) inhibitor SP600125. These results suggest that physcion upregulates hST8Sia VI gene expression via ERK and p38 MAPK pathways in SK-N-BE(2)-C cells.


Subject(s)
Brain Neoplasms/genetics , Emodin/analogs & derivatives , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Neuroblastoma/genetics , Sialyltransferases/genetics , Up-Regulation/drug effects , 5' Flanking Region/genetics , Apoptosis/drug effects , Apoptosis/genetics , Base Sequence , Brain Neoplasms/enzymology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Emodin/chemistry , Emodin/isolation & purification , Emodin/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Neuroblastoma/enzymology , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, DNA , Sequence Deletion , Sialyltransferases/metabolism , Transcriptional Activation/drug effects , Transcriptional Activation/genetics , Up-Regulation/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
12.
J Microbiol Biotechnol ; 26(2): 309-14, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26597532

ABSTRACT

We first demonstrated that cordycepin inhibited cell growth and triggered apoptosis in U87MG cells with wild-type p53, but not in T98G cells with mutant-type p53. Western blot data revealed that the levels of procaspase-8, -3, and Bcl-2 were downregulated in cordycepintreated U87MG cells, whereas the levels of Fas, FasL, Bak, cleaved caspase-3, -8, and cleaved PARP were upregulated, indicating that cordycepin induces apoptosis by activating the death receptor-mediated pathway in U87MG cells. Cordycepin-induced apoptosis could be suppressed by only SB203580, a p38 MAPK-specific inhibitor. These results suggest that cordycepin triggered apoptosis in U87MG cells through p38 MAPK activation and inhibition of the Akt survival pathway.


Subject(s)
Apoptosis/drug effects , Cell Survival/drug effects , Deoxyadenosines/pharmacology , Glioblastoma , Antifungal Agents/pharmacology , Caspase 3/metabolism , Caspase 8/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Fas Ligand Protein/metabolism , Humans , Signal Transduction , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
13.
Neurosci Lett ; 588: 101-7, 2015 Feb 19.
Article in English | MEDLINE | ID: mdl-25562207

ABSTRACT

In this study, a neurite outgrowth-inducing substance was isolated from the ethylacetate extract of the Polygonum multiflorum roots and identified as emodin by gas-liquid chromatography-mass spectrometry and (1)H NMR and (13)C NMR. Emodin displayed remarkable neurite outgrowth-inducing activity in Neuro2a cells, as demonstrated by morphological changes and immunocytochemistry for class III ß-tubulin. Emodin exhibited a stronger neutrophic activity than retinoic acid (RA) known as inducer of neurite outgrowth in Neuro2a cells. Emodin treatment resulted in marked increases in phosphorylation of Akt a direct downstream signaling molecule of phosphatidylinositol 3-kinase (PI3K), but upstream of glycogen synthase kinase-3ß (GSK-3ß) and cAMP response element-binding protein (CREB). These augmentations and neurite-bearing cells induced by emodin were remarkably reduced by the addition of PI3K inhibitor LY294002. These results demonstrate that emodin induces neuronal differentiation of Neuro2a cells via PI3K/Akt/GSK-3ß pathway.


Subject(s)
Emodin/pharmacology , Glycogen Synthase Kinase 3/metabolism , Neurites/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Cell Line, Tumor , Cell Survival/drug effects , Emodin/isolation & purification , Glycogen Synthase Kinase 3 beta , Mice , Neurites/physiology , Plant Extracts/chemistry , Polygonum/chemistry , Signal Transduction
14.
Int J Mol Sci ; 17(1)2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26729095

ABSTRACT

Serum deprivation (SD) is well known to induce G0/G1 cell cycle arrest and apoptosis in various cells. In the present study, we firstly found that SD could induce G1 arrest and the differentiation of human osteoblastic MG-63 cells, as evidenced by the increase of osteoblastic differentiation markers, such as bone morphogenetic protein-2 (BMP-2), osteocalcin and runt-related transcription factor 2 (Runx2). In parallel, gene expression of human GM3 synthase (hST3Gal V) catalyzing ganglioside GM3 biosynthesis was upregulated by SD in MG-63 cells. The 5'-flanking region of the hST3Gal V gene was functionally characterized to elucidate transcriptional regulation of hST3Gal V in SD-induced MG-63 cells. Promoter analysis using 5'-deletion constructs of the hST3Gal V gene demonstrated that the -432 to -177 region functions as the SD-inducible promoter. Site-directed mutagenesis revealed that the Runx2 binding sites located side-by-side at positions -232 and -222 are essential for the SD-induced expression of hST3Gal V in MG-63 cells. In addition, the chromatin immunoprecipitation assay also showed that Runx2 specifically binds to the hST3Gal V promoter region containing Runx2 binding sites. These results suggest that SD triggers upregulation of hST3Gal V gene expression through Runx2 activation by BMP signaling in MG-63 cells.


Subject(s)
Core Binding Factor Alpha 1 Subunit , Osteoblasts/metabolism , Sialyltransferases/genetics , Transcriptional Activation , 5' Flanking Region , Cell Line , Humans , Osteoblasts/physiology
15.
PLoS One ; 9(12): e114607, 2014.
Article in English | MEDLINE | ID: mdl-25490748

ABSTRACT

Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3) puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC) staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA), pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ) suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α) and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy.


Subject(s)
Adenocarcinoma/pathology , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Flavanones/pharmacology , Lung Neoplasms/pathology , AMP-Activated Protein Kinases/metabolism , Adenocarcinoma of Lung , Benzothiazoles , Cell Line, Tumor , Cell Survival/drug effects , Gene Knockdown Techniques , HCT116 Cells , Humans , Lamiales/chemistry , MCF-7 Cells , TOR Serine-Threonine Kinases/metabolism , Toluene/analogs & derivatives , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
16.
Mol Med Rep ; 9(4): 1197-203, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24481726

ABSTRACT

The anti-inflammatory mechanism of 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone (5HHMF), a polyhydroxyflavone isolated from the marine algae Hizikia fusiforme, was investigated in RAW 264.7 murine macrophage cells. Western blot and reverse transcriptase PCR analyses indicated that adding 5HHMF to cultured cells significantly reduced the production of nitric oxide and prostaglandin E2 and downregulated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. In addition, 5HHMF inhibited the release of pro-inflammatory cytokines, such as tumor necrosis factor-α and interleukin-1ß, and decreased the transcriptional levels. In particular, 5HHMF significantly inhibited the LPS-induced nuclear factor-κB (NF-κB) translocation from the cytosol to the nucleus, which was associated with the abrogation of inhibitory IκBα degradation and subsequent decreases in nuclear p65 levels. In conclusion, these results suggested that the anti-inflammatory activities of 5HHMF may be attributed to the inhibition of iNOS, COX-2 and cytokine expression by attenuating NF-κB activation via IκBα degradation in macrophages.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Flavones/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/metabolism , NF-kappa B/metabolism , Animals , Cell Death/drug effects , Cell Line , Cell Survival/drug effects , Cyclooxygenase 2/metabolism , Dinoprostone/biosynthesis , Flavones/chemistry , Interleukin-1beta/biosynthesis , Macrophages/cytology , Macrophages/drug effects , Macrophages/enzymology , Mice , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type II/metabolism , Protective Agents/pharmacology , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/biosynthesis
17.
Acta Biochim Biophys Sin (Shanghai) ; 46(1): 65-71, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24225218

ABSTRACT

In the present study, we firstly found that cordycepin elevated the gene expression of the human GD3 synthase (hST8Sia I) in human neuroblastoma SK-N-BE(2)-C cells. To elucidate the mechanism underlying the upregulation of hST8Sia I gene expression in cordycepin-treated SK-N-BE(2)-C cells, functional characterization of the promoter region of the hST8Sia I gene was performed. Analysis of promoter activity using varying lengths of 5'-flanking region showed a dramatic increase by cordycepin in the -1146 to -646 region, which contains putative binding sites for transcription factors c-Ets-1, CREB, AP-1, and NF-κB. Site-directed mutagenesis for these binding sites and chromatin immunoprecipitation assay revealed that the NF-κB binding site at -731 to -722 is essential for the cordycepin-induced expression of the hST8Sia I in SK-N-BE(2)-C cells. Moreover, the hST8Sia I expression induced by cordycepin was significantly repressed by pyrrolidinedithiocarbamate, an inhibitor of NF-κB. These results suggested that cordycepin induces upregulation of hST8Sia I gene expression through NF-κB activation in SK-N-BE(2)-C cells.


Subject(s)
Deoxyadenosines/pharmacology , Sialyltransferases/biosynthesis , Cell Line, Tumor , Cell Survival/drug effects , Humans , NF-kappa B/metabolism , Neuroblastoma/enzymology , Promoter Regions, Genetic , Transcriptional Activation , Up-Regulation
18.
PLoS One ; 8(12): e83611, 2013.
Article in English | MEDLINE | ID: mdl-24358301

ABSTRACT

Anticancer effects of dendropanoxide (DP) newly isolated from leaves and stem of Dendropanax morbifera Leveille were firstly investigated in this study. DP inhibited cell proliferation and induced apoptosis in dose- and time-dependent manner in MG-63 human osteosarcoma cells, which was dependent on the release of cytochrome c to the cytosol and the activation of caspases. Moreover, the DP-treated cells exhibited autophagy, as characterized by the punctuate patterns of microtubule-associated protein 1 light chain 3 (LC3) by confocal microscopy and the appearance of autophagic vacuoles by MDC staining. The expression levels of ATG7, Beclin-1 and LC3-II were also increased by DP treatment. Inhibition of autophagy by 3-methyladenine (3-MA) and wortmannin (Wort) significantly enhanced DP-induced apoptosis. DP treatment also caused a time-dependent increase in protein levels of extracellular signal-regulated kinase 1 and 2 (ERK1/2), and inhibition of ERK1/2 phosphorylation with U0126 resulted in a decreased DP-induced autophagy that was accompanied by an increased apoptosis and a decreased cell viability. These results indicate a cytoprotective function of autophagy against DP-induced apoptosis and suggest that the combination of DP treatment with autophagy inhibition may be a promising strategy for human osteosarcoma control. Taken together, this study demonstrated for the first time that DP could induce autophagy through ERK1/2 activation in human osteosarcoma cells and autophagy inhibition enhanced DP-induced apoptosis.


Subject(s)
Adenine/analogs & derivatives , Apoptosis/drug effects , Autophagy/drug effects , Bone Neoplasms/pathology , Osteosarcoma/pathology , Triterpenes/pharmacology , Adenine/pharmacology , Bone Neoplasms/metabolism , Cell Survival/drug effects , Enzyme Activation/drug effects , Humans , MAP Kinase Signaling System/drug effects , Neoplasms/metabolism , Neoplasms/pathology , Osteosarcoma/metabolism , Tumor Cells, Cultured
19.
Int J Oncol ; 43(6): 1943-50, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24141596

ABSTRACT

The biochemical mechanisms of cell death by oleifolioside B (OB), a cycloartane-type triterpene glycoside isolated from Dendropanax morbifera Leveille, were investigated in A549 human lung carcinoma cells. Our data indicated that exposure to OB led to caspase activation and typical features of apoptosis; however, apoptotic cell death was not prevented by z-VAD-fmk, a pan-caspase inhibitor, demonstrating that OB-induced apoptosis was independent of caspase activation. Subsequently, we found that OB increased autophagy, as indicated by an increase in monodansylcadaverine fluorescent dye-labeled autophagosome formation and in the levels of the autophagic form of microtubule-associated protein 1 light chain 3 and Atg3, an autophagy-specific gene, which is associated with inhibiting phospho-nuclear factor erythroid 2-related factor 2 (Nrf2) expression. However, pretreatment with bafilomycin A1, an autophagy inhibitor, attenuated OB-induced apoptosis and dephosphorylation of Nrf2. The data suggest that OB-induced autophagy functions as a death mechanism in A549 cells and OB has potential as a novel anticancer agent capable of targeting apoptotic and autophagic cell death and the Nrf2 signaling pathway.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Saponins/pharmacology , Amino Acid Chloromethyl Ketones/pharmacology , Antineoplastic Agents/pharmacology , Autophagy-Related Proteins , CASP8 and FADD-Like Apoptosis Regulating Protein/biosynthesis , Caspase 3/metabolism , Caspase 8/metabolism , Caspase 9/metabolism , Caspase Inhibitors/pharmacology , Cell Line, Tumor , Enzyme Inhibitors/pharmacology , Humans , Inhibitor of Apoptosis Proteins/biosynthesis , Macrolides/pharmacology , Microtubule-Associated Proteins/biosynthesis , Microtubule-Associated Proteins/metabolism , NF-E2-Related Factor 2/biosynthesis , NF-E2-Related Factor 2/metabolism , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Survivin , Ubiquitin-Conjugating Enzymes/biosynthesis , Ubiquitin-Conjugating Enzymes/metabolism
20.
Biochem J ; 449(1): 241-51, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23050851

ABSTRACT

TGF-ß (transforming growth factor-ß)-induced EMT (epithelial-mesenchymal transition) induces the proliferation and migration of the HLE (human lens epithelial) cells. Ganglioside GM3, simple sialic-acid-containing glycosphingolipids on mammalian cell membranes, regulates various pathological phenomena such as insulin resistance and tumour progression. However, the relationship between ganglioside GM3 and TGF-ß-induced EMT in the HLE B-3 cells is poorly understood. In the present study we demonstrated that ganglioside GM3 was involved in TGF-ß1-induced EMT in HLE B-3 cells. Our results indicated that the expression of ganglioside GM3 and GM3 synthase mRNA were significantly increased in TGF-ß1-induced HLE B-3 cells. Reporter gene analysis also demonstrated that transcriptional activation of the GM3 synthase gene was regulated by Sp1 (specificity protein 1) in HLE B-3 cells upon TGF-ß1 stimulation. Interestingly, the inhibition of ganglioside GM3 expression by d-PDMP [d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol] and GM3 synthase shRNA (short hairpin RNA) resulted significantly in the suppression of cell migration and EMT-related signalling in HLE B-3 cells stimulated by TGF-ß. Furthermore, exogenous treatment of ganglioside GM3 rescued the expression of EMT molecules and cell migration suppressed by the depletion of ganglioside GM3 in TGF-ß1-induced HLE B-3 cells. We also found that ganglioside GM3 interacted with TGFßRs (TGF-ß receptors) in TGF-ß1-induced HLE B-3 cells. Taken together, these results suggest that ganglioside GM3 induced by TGF-ß1 regulates EMT by potential interaction with TGFßRs.


Subject(s)
Cell Movement/physiology , Epithelial-Mesenchymal Transition/physiology , Lens, Crystalline/cytology , Lens, Crystalline/metabolism , Sialyltransferases/chemistry , Transforming Growth Factor beta1/physiology , Base Sequence , Cell Line , Epithelial Cells/metabolism , Humans , Mesoderm/metabolism , Molecular Sequence Data , Sialyltransferases/physiology , Transforming Growth Factor beta1/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...