Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998987

ABSTRACT

The inhibition of soluble epoxide hydrolase (sEH) can reduce the level of dihydroxyeicosatrienoic acids (DHETs) effectively maintaining endogenous epoxyeicosatrienoic acids (EETs) levels, resulting in the amelioration of inflammation and pain. Consequently, the development of sEH inhibitors has been a prominent research area for over two decades. In the present study, we synthesized and evaluated sulfonyl urea derivatives for their potential to inhibit sEH. These compounds underwent extensive in vitro investigation, revealing their potency against human and mouse sEH, with 4f showing the most promising sEH inhibitory potential. When subjected to lipopolysaccharide (LPS)-induced acute lung injury (ALI) in studies in mice, compound 4f manifested promising anti-inflammatory efficacy. We investigated the analgesic efficacy of sEH inhibitor 4f in a murine pain model of tail-flick reflex. These results validate the role of sEH inhibition in inflammatory diseases and pave the way for the rational design and optimization of sEH inhibitors based on a sulfonyl urea template.


Subject(s)
Enzyme Inhibitors , Epoxide Hydrolases , Urea , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Animals , Mice , Humans , Urea/pharmacology , Urea/analogs & derivatives , Urea/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/therapeutic use , Lipopolysaccharides , Structure-Activity Relationship , Solubility , Disease Models, Animal , Pain/drug therapy
2.
J Imaging Inform Med ; 37(2): 734-743, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38316667

ABSTRACT

The purpose is to train and evaluate a deep learning (DL) model for the accurate detection and segmentation of abnormal cervical lymph nodes (LN) on head and neck contrast-enhanced CT scans in patients diagnosed with lymphoma and evaluate the clinical utility of the DL model in response assessment. This retrospective study included patients who underwent CT for abnormal cervical LN and lymphoma assessment between January 2021 and July 2022. Patients were grouped into the development (n = 76), internal test 1 (n = 27), internal test 2 (n = 87), and external test (n = 26) cohorts. A 3D SegResNet model was used to train the CT images. The volume change rates of cervical LN across longitudinal CT scans were compared among patients with different treatment outcomes (stable, response, and progression). Dice similarity coefficient (DSC) and the Bland-Altman plot were used to assess the model's segmentation performance and reliability, respectively. No significant differences in baseline clinical characteristics were found across cohorts (age, P = 0.55; sex, P = 0.13; diagnoses, P = 0.06). The mean DSC was 0.39 ± 0.2 with a precision and recall of 60.9% and 57.0%, respectively. Most LN volumes were within the limits of agreement on the Bland-Altman plot. The volume change rates among the three groups differed significantly (progression (n = 74), 342.2%; response (n = 8), - 79.2%; stable (n = 5), - 8.1%; all P < 0.01). Our proposed DL segmentation model showed modest performance in quantifying the cervical LN burden on CT in patients with lymphoma. Longitudinal changes in cervical LN volume, as predicted by the DL model, were useful for treatment response assessment.

3.
J Med Chem ; 65(3): 2374-2387, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35084860

ABSTRACT

In the present report, we describe the synthesis and structure-activity relationships of novel "four-arm" dihydropyrazoline compounds designed as peripherally restricted antagonists of cannabinoid-1 receptor (CB1R). A series of racemic 3,4-diarylpyrazolines were synthesized and evaluated initially in CB1 receptor binding assays. The novel compounds, designed to limit brain penetrance and decreased lipophilicity, showed high affinity for CB1R and potent in vitro CB1R antagonist activities. Promising compounds with potent CB1R activity were evaluated in tissue distribution studies. Compounds 6a, 6f, and 7c showed limited brain penetrance attesting to its peripheral restriction. The 4S-enantiomer of these compounds further showed a stereoselective affinity for the CB1 receptor and behaved as inverse agonists. In vivo studies on food intake and body weight reduction in diet-induced obese (DIO) mice showed that these compounds could serve as potential leads for the development of selective CB1R antagonists with improved potency and peripheral restriction.


Subject(s)
Anti-Obesity Agents/therapeutic use , Cannabinoid Receptor Antagonists/therapeutic use , Obesity/drug therapy , Pyrazoles/therapeutic use , Receptor, Cannabinoid, CB1/metabolism , Animals , Anti-Obesity Agents/chemical synthesis , Anti-Obesity Agents/metabolism , Body Weight/drug effects , Brain/metabolism , Cannabinoid Receptor Antagonists/chemical synthesis , Cannabinoid Receptor Antagonists/metabolism , Diet, High-Fat , Drug Inverse Agonism , Hydrophobic and Hydrophilic Interactions , Male , Mice, Inbred C57BL , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Stereoisomerism , Structure-Activity Relationship
4.
Cell Death Differ ; 25(7): 1239-1258, 2018 07.
Article in English | MEDLINE | ID: mdl-29651165

ABSTRACT

Therapy resistance represents a clinical challenge for advanced non-small cell lung cancer (NSCLC), which still remains an incurable disease. There is growing evidence that cancer-initiating or cancer stem cells (CSCs) provide a reservoir of slow-growing dormant populations of cells with tumor-initiating and unlimited self-renewal ability that are left behind by conventional therapies reigniting post-therapy relapse and metastatic dissemination. The metabolic pathways required for the expansion of CSCs are incompletely defined, but their understanding will likely open new therapeutic opportunities. We show here that lung CSCs rely upon oxidative phosphorylation for energy production and survival through the activity of the mitochondrial citrate transporter, SLC25A1. We demonstrate that SLC25A1 plays a key role in maintaining the mitochondrial pool of citrate and redox balance in CSCs, whereas its inhibition leads to reactive oxygen species build-up thereby inhibiting the self-renewal capability of CSCs. Moreover, in different patient-derived tumors, resistance to cisplatin or to epidermal growth factor receptor (EGFR) inhibitor treatment is acquired through SLC25A1-mediated implementation of mitochondrial activity and induction of a stemness phenotype. Hence, a newly identified specific SLC25A1 inhibitor is synthetic lethal with cisplatin or with EGFR inhibitor co-treatment and restores antitumor responses to these agents in vitro and in animal models. These data have potential clinical implications in that they unravel a metabolic vulnerability of drug-resistant lung CSCs, identify a novel SLC25A1 inhibitor and, lastly, provide the first line of evidence that drugs, which block SLC25A1 activity, when employed in combination with selected conventional antitumor agents, lead to a therapeutic benefit.


Subject(s)
Anion Transport Proteins/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Cisplatin/pharmacology , Drug Resistance, Neoplasm , Lung Neoplasms/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/metabolism , Protein Kinase Inhibitors/pharmacology , Animals , Anion Transport Proteins/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice, Inbred BALB C , Mice, Nude , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Proteins/genetics , Neoplasm Proteins/genetics , Neoplastic Stem Cells/pathology , Organic Anion Transporters
SELECTION OF CITATIONS
SEARCH DETAIL
...