Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 11(12)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271930

ABSTRACT

Recently, graphene has gained a lot of attention in the electronic industry due to its unique properties and has paved the way for realizing novel devices in the field of electronics. For the development of new device applications, it is necessary to grow large wafer-sized monolayer graphene samples. Among the methods to synthesize large graphene films, chemical vapor deposition (CVD) is one of the promising and common techniques. However, during the growth and transfer of the CVD graphene monolayer, defects such as wrinkles, cracks, and holes appear on the graphene surface. These defects can influence the electrical properties and it is of interest to know the quality of graphene samples non-destructively. Electrical impedance tomography (EIT) can be applied as an alternate method to determine conductivity distribution non-destructively. The EIT inverse problem of reconstructing conductivity is highly non-linear and is heavily dependent on measurement accuracy and modeling errors related to an accurate knowledge of electrode location, contact resistances, the exact outer boundary of the graphene wafer, etc. In practical situations, it is difficult to eliminate these modeling errors as complete knowledge of the electrode contact impedance and outer domain boundary is not fully available, and this leads to an undesirable solution. In this paper, a difference imaging approach is proposed to estimate the conductivity change of graphene with respect to the reference distribution from the data sets collected before and after the change. The estimated conductivity change can be used to locate the defects on the graphene surface caused due to the CVD transfer process or environment interaction. Numerical and experimental results with graphene sample of size 2.5 × 2.5 cm are performed to determine the change in conductivity distribution and the results show that the proposed difference imaging approach handles the modeling errors and estimates the conductivity distribution with good accuracy.

2.
Philos Trans A Math Phys Eng Sci ; 367(1900): 3095-120, 2009 Aug 13.
Article in English | MEDLINE | ID: mdl-19581257

ABSTRACT

The monitoring of solid-fluid suspensions under the influence of gravity is widely used in industrial processes. By considering sedimentation layers with different electrical properties, non-invasive methods such as electrical impedance tomography (EIT) can be used to estimate the settling curves and velocities. In recent EIT studies, the problem of estimating the locations of phase interfaces and phase conductivities has been treated as a nonlinear state estimation problem and the extended Kalman filter (EKF) has been successfully applied. However, the EKF is based on a Gaussian assumption and requires a linearized measurement model. The linearization (or derivation of the Jacobian) is possible when there are no discontinuities in the system. Furthermore, having a complex phase interface representation makes derivation of the Jacobian a tedious task. Therefore, in this paper, we explore the unscented Kalman filter (UKF) as an alternative approach for estimating phase interfaces and conductivities in sedimentation processes. The UKF uses a nonlinear measurement model and is therefore more accurate. In order to justify the proposed approach, extensive numerical experiments have been performed and a comparative analysis with the EKF is provided.

3.
Physiol Meas ; 27(5): S81-91, 2006 May.
Article in English | MEDLINE | ID: mdl-16636422

ABSTRACT

A dynamic complex impedance imaging technique is developed with the aid of the linearized Kalman filter (LKF) for real-time reconstruction of the human chest. The forward problem is solved by an analytical method based on the separation of variables and Fourier series. The inverse problem is treated as a state estimation problem. The nonlinear measurement equation is linearized about the best homogeneous impedivity value as an initial guess, and the impedivity distribution is estimated with the aid of the Kalman estimator. The Kalman gain matrix is pre-computed and stored off-line to minimize the on-line computational time. Simulation and phantom experiment are reported to illustrate the reconstruction performances in the sense of spatio-temporal resolution in a simplified geometry of the human chest.


Subject(s)
Algorithms , Electric Impedance , Image Interpretation, Computer-Assisted/methods , Plethysmography, Impedance/methods , Thorax/anatomy & histology , Thorax/physiology , Tomography/methods , Image Enhancement/methods , Models, Biological , Models, Statistical , Nonlinear Dynamics , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity , Systems Theory
4.
Physiol Meas ; 26(2): S217-33, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15798235

ABSTRACT

In this paper, an effective dynamical EIT imaging scheme is presented for on-line monitoring of the abruptly changing resistivity distribution inside the object, based on the interacting multiple model (IMM) algorithm. The inverse problem is treated as a stochastic nonlinear state estimation problem with the time-varying resistivity (state) being estimated on-line with the aid of the IMM algorithm. In the design of the IMM algorithm multiple models with different process noise covariance are incorporated to reduce the modeling uncertainty. Simulations and phantom experiments are provided to illustrate the proposed algorithm.


Subject(s)
Algorithms , Body Constitution/physiology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Models, Biological , Plethysmography, Impedance/methods , Tomography/methods , Animals , Computer Simulation , Electric Impedance , Humans , Phantoms, Imaging , Plethysmography, Impedance/instrumentation , Reproducibility of Results , Sensitivity and Specificity , Tomography/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...