Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Food ; 25(7): 710-721, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35766964

ABSTRACT

This study was performed to investigate the effects of persimmon (Diospyros kaki) on high-fat diet (HFD)-induced hepatic lipotoxicity. The compounds of persimmon water extract (PWE) were identified as gallic acid, glucogallin, 1-O-Galloyl-(2-O-acetyl)-glu, and trihydroxy-octadecadienoic acid. The PWE was ingested by C57BL/6 mice with an HFD for 8 weeks. The PWE improved glucose tolerance and suppressed weight gain by inhibiting increases in the weight of liver and adipose tissues. The results of serum biomarker analysis showed that PWE suppressed biomarkers such as liver injury and dyslipidemia. In ex vivo tests, reduction of oxidative stress and improvement of mitochondrial dysfunction were confirmed in the liver of PWE groups. In a molecular study, it was confirmed that PWE decreased lipid accumulation, insulin resistance, inflammation, and apoptosis in the liver. Finally, in a metabolite analysis of liver tissue using ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS), it was confirmed that PWE has an effect on lipid metabolism. In particular, PWE reduced phosphatidylcholines (PCs) and lysophosphatidylcholines (lysoPCs). Notably, it is presumed that the reduction of lysoPCs and PCs in the PWE group is related to the improvement of liver dysfunction due to lipotoxicity.


Subject(s)
Diospyros , Non-alcoholic Fatty Liver Disease , Animals , Diet, High-Fat/adverse effects , Diospyros/chemistry , Lipid Metabolism , Lipids , Liver/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Plant Extracts/chemistry , Water/metabolism
2.
Curr Issues Mol Biol ; 43(1): 405-422, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205542

ABSTRACT

This study confirmed the ameliorating effect of immature persimmon (Diospyros kaki) ethanolic extract (IPEE) on neuronal cytotoxicity in amyloid beta (Aß)1-42-induced ICR mice. The administration of IPEE ameliorated the cognitive dysfunction in Aß1-42-induced mice by improving the spatial working memory, the short-term and long-term memory functions. IPEE protected the cerebral cholinergic system, such as the acetylcholine (ACh) level and acetylcholinesterase (AChE) activity, and antioxidant system, such as the superoxide dismutase (SOD), reduced glutathione (GSH) and malondialdehyde (MDA) contents. In addition, mitochondrial dysfunction against Aß1-42-induced toxicity was reduced by regulating the reactive oxygen species (ROS), mitochondrial membrane potential and ATP contents. In addition, IPEE regulated the expression levels of tau signaling, such as TNF-α, p-JNK, p-Akt, p-GSK3ß, p-tau, p-NF-κB, BAX and caspase 3. Finally, gallic acid, ellagic acid and quercetin 3-O-(6″-acetyl-glucoside) were identified as the physiological compounds of IPEE using ultra-performance liquid chromatography ion mobility separation quadrupole time-of-flight/tandem mass spectrometry (UPLC IMS Q-TOF/MS2).


Subject(s)
Cognitive Dysfunction/prevention & control , Diospyros/chemistry , Fruit/chemistry , Plant Extracts/pharmacology , Tauopathies/prevention & control , Acetylcholine/metabolism , Acetylcholinesterase/metabolism , Amyloid beta-Peptides , Animals , Antioxidants/metabolism , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Ethanol/chemistry , Maze Learning/drug effects , Membrane Potential, Mitochondrial/drug effects , Memory, Short-Term/drug effects , Mice, Inbred ICR , Peptide Fragments , Plant Extracts/chemistry , Reactive Oxygen Species/metabolism , Tauopathies/chemically induced , Tauopathies/metabolism , tau Proteins/metabolism
3.
J Asian Nat Prod Res ; 23(4): 371-378, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32166984

ABSTRACT

Two new compounds, including a nor-pimarane diterpenoid (continentanol, 1) and a phenolic derivative (aralianic acid, 2), along with the known diterpenoids (3-11), polyacetylenes (12-15), phenolic components (16-28), and phytosterols (29 and 30), were isolated from roots of Aralia continentalis. The structures of the new compounds were established by spectroscopic data interpretation, particularly HRESIMS, 1 D and 2 D NMR data including HSQC and HMBC. Also, those of the known compounds were identified by spectral comparison with those of the reported values.[Formula: see text].


Subject(s)
Aralia , Diterpenes , Molecular Structure , Plant Extracts , Plant Roots
4.
Antioxidants (Basel) ; 9(10)2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33053754

ABSTRACT

This study was conducted to assess the protective effect of walnut (Juglans regia L.) extract on amyloid beta (Aß)1-42-induced institute of cancer research (ICR) mice. By conducting a Y-maze, passive avoidance, and Morris water maze tests with amyloidogenic mice, it was found that walnut extract ameliorated behavioral dysfunction and memory deficit. The walnut extract showed a protective effect on the antioxidant system and cholinergic system by regulating malondialdehyde (MDA) levels, superoxide dismutase (SOD) contents, reduced glutathione (GSH) contents, acetylcholine (ACh) levels, acetylcholinesterase (AChE) activity, and protein expression of AChE and choline acetyltransferase (ChAT). Furthermore, the walnut extract suppressed Aß-induced abnormality of mitochondrial function by ameliorating reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and ATP contents. Finally, the walnut extract regulated the expression of zonula occludens-1 (ZO-1) and occludin concerned with blood-brain barrier (BBB) function, expression of tumor necrosis factor-alpha (TNF-α), tumor necrosis factor receptor 1 (TNFR1), phosphorylated c-Jun N-terminal kinase (p-JNK), phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (p-IκB), cyclooxygenase-2 (COX-2), and interleukin 1 beta (IL-1ß), related to neuroinflammation and the expression of phosphorylated protein kinase B (p-Akt), caspase-3, hyperphosphorylation of tau (p-tau), and heme oxygenase-1 (HO-1), associated with the Aß-related Akt pathway.

5.
Molecules ; 25(18)2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32942597

ABSTRACT

Pollination is essential for efficient reproduction in pollinator-dependent crops that rely on the attraction of pollinators to flowers. Especially, floral nectar is considered to be an important factor attracting pollinator like honey bees, but differences among major chestnut species (Castanea crenata, C. mollissima, C. dentata, and C. sativa) are still little explored. This study aims to evaluate the value of honey source by analyzing floral nectar characteristics and comparing the composition of volatile organic compounds (VOCs) that mediate plant-pollinator interaction. In this study, we analyzed nectar samples obtained from male flowers using HPLC and HS-SPME/GC-MS. The five chestnuts showed significant differences between the volume of secreted nectar, free sugar composition, amino acid content and VOCs composition. Furthermore, C. crenata (Japanese cultivar 'Ungi') was revealed to emit the highest total amounts of VOCs and high levels of benzenoid compounds that are generally associated with flower-visiting insects. The sugar content per catkin, which is used to determine the honey yield, was the highest in C. crenata, suggesting that C. crenata 'Ungi' can be highly valued as a honey tree. Therefore, a better understanding of the relationship between pollinator and nectar characteristics of C. crenara could contribute to a prospective honey plant.


Subject(s)
Fagaceae/chemistry , Volatile Organic Compounds/analysis , Amino Acids/analysis , Fagaceae/metabolism , Flowers/chemistry , Flowers/metabolism , Gas Chromatography-Mass Spectrometry , Plant Nectar/chemistry , Plant Nectar/metabolism , Principal Component Analysis , Solid Phase Microextraction , Sugars/analysis , Volatile Organic Compounds/isolation & purification
6.
Plants (Basel) ; 9(7)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32630052

ABSTRACT

The active compounds of medicinal plants vary in composition and content depending on environmental factors, such as light, temperature, and soil. According to the Korean Pharmacopoeia standards for herbal medicine, the sum of nodakenin, decursin, and decursinolangelate, which are the marker components of Korean Angelica, should be at least 6.0 g/100 g. However, the content of the components in Korean Angelica cultivated in South Korea often fall below 6.0 g/100 g, due to weather conditions and cultivation site characteristics. This study aimed to gather information about environmental factors that affect the root growth and the content of active compounds. In total, 18 cultivation sites in Pyeongchang, Jecheon, and Bonghwa regions in Korea were investigated for this study. Environmental factors, such as the monthly mean temperature, mean relative humidity, duration of sunshine, total precipitation, soil acidity, and the characteristics of soil nutrient, were investigated over the growing season from April to October 2017. As for the growth characteristics, the dry weight of roots of Korean Angelica was measured. The sum of the contents of the three active compounds was 5.3-7.0 g/100 g and the nodakenin content was 0.3-1.3 g/100 g in the cultivation sites. This study concludes that the root yields in the cultivation sites would be improved if weather conditions are maintained with similar levels as those in their natural habitats. Additionally, the environment that improves root growth did not increase the content of active compounds; however, when there was a lot of gravel or high temperatures during the growth period, the content of active compounds was relatively high.

SELECTION OF CITATIONS
SEARCH DETAIL
...