Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 176(3): 491-504.e21, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30612740

ABSTRACT

Increased protein synthesis plays an etiologic role in diverse cancers. Here, we demonstrate that METTL13 (methyltransferase-like 13) dimethylation of eEF1A (eukaryotic elongation factor 1A) lysine 55 (eEF1AK55me2) is utilized by Ras-driven cancers to increase translational output and promote tumorigenesis in vivo. METTL13-catalyzed eEF1A methylation increases eEF1A's intrinsic GTPase activity in vitro and protein production in cells. METTL13 and eEF1AK55me2 levels are upregulated in cancer and negatively correlate with pancreatic and lung cancer patient survival. METTL13 deletion and eEF1AK55me2 loss dramatically reduce Ras-driven neoplastic growth in mouse models and in patient-derived xenografts (PDXs) from primary pancreatic and lung tumors. Finally, METTL13 depletion renders PDX tumors hypersensitive to drugs that target growth-signaling pathways. Together, our work uncovers a mechanism by which lethal cancers become dependent on the METTL13-eEF1AK55me2 axis to meet their elevated protein synthesis requirement and suggests that METTL13 inhibition may constitute a targetable vulnerability of tumors driven by aberrant Ras signaling.


Subject(s)
Methyltransferases/metabolism , Peptide Elongation Factor 1/metabolism , Adult , Aged , Animals , Carcinogenesis , Cell Line , Cell Transformation, Neoplastic/metabolism , Female , HEK293 Cells , Heterografts , Humans , Lysine/metabolism , Male , Methylation , Methyltransferases/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Peptide Elongation Factor 1/genetics , Protein Biosynthesis , Protein Processing, Post-Translational , Proteomics , Signal Transduction
2.
Front Oncol ; 5: 249, 2015.
Article in English | MEDLINE | ID: mdl-26618142

ABSTRACT

The functional importance of p53 as a tumor suppressor gene is evident through its pervasiveness in cancer biology. The p53 gene is the most commonly altered gene in human cancer; however, not all genetic alterations are biologically equivalent. The majority of alterations involve p53 missense mutations that result in the production of mutant p53 proteins. Such mutant p53 proteins lack normal p53 function and may concomitantly gain novel functions, often with deleterious effects. Here, we review characterized mechanisms of mutant p53 gain of function in various model systems. In addition, we review mutant p53 addiction as emerging evidence suggests that tumors may depend on sustained mutant p53 activity for continued growth. We also discuss the role of p53 in stromal elements and their contribution to tumor initiation and progression. Lastly, current genetic mouse models of mutant p53 in various organ systems are reviewed and their limitations discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...