Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biosens Bioelectron ; 260: 116436, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38824701

ABSTRACT

A mid-infrared label-free immunoassay-based biosensor is an effective device to help identify and quantify biomolecules. This biosensor employs a surface-enhanced infrared absorption spectroscopy, which is a highly potent sensing technique for detecting minute quantities of analytes. In this study, a biosensor was constructed using a metamaterial absorber, which facilitated strong coupling effects. For maximum coupling effect, it is necessary to enhance the near-field intensity and the spatial and spectral overlap between the optical cavity resonance and the vibrational mode of the analyte. Due to significant peak splitting, conventional baseline correction methods fail to adequately analyze such a coupling system. Therefore, we employed a coupled harmonic oscillation model to analyze the spectral distortion resulting from the peak splitting induced by the strong coupling effect. The proposed biosensor with a thrombin-binding aptamer-based immunoassay could achieve a limit of detection of 267.4 pM, paving the way for more efficient protein detection in clinical practice.


Subject(s)
Biosensing Techniques , Limit of Detection , Biosensing Techniques/methods , Immunoassay/methods , Immunoassay/instrumentation , Humans , Aptamers, Nucleotide/chemistry , Equipment Design , Spectrophotometry, Infrared , Proteins/analysis , Thrombin/analysis
2.
Cyborg Bionic Syst ; 4: 0043, 2023.
Article in English | MEDLINE | ID: mdl-37533545

ABSTRACT

Dysfunctional blood vessels are implicated in various diseases, including cardiovascular diseases, neurodegenerative diseases, and cancer. Several studies have attempted to prevent and treat vascular diseases and understand interactions between these diseases and blood vessels across different organs and tissues. Initial studies were conducted using 2-dimensional (2D) in vitro and animal models. However, these models have difficulties in mimicking the 3D microenvironment in human, simulating kinetics related to cell activities, and replicating human pathophysiology; in addition, 3D models involve remarkably high costs. Thus, in vitro bioengineered models (BMs) have recently gained attention. BMs created through biofabrication based on tissue engineering and regenerative medicine are breakthrough models that can overcome limitations of 2D and animal models. They can also simulate the natural microenvironment in a patient- and target-specific manner. In this review, we will introduce 3D bioprinting methods for fabricating bioengineered blood vessel models, which can serve as the basis for treating and preventing various vascular diseases. Additionally, we will describe possible advancements from tubular to vascular models. Last, we will discuss specific applications, limitations, and future perspectives of fabricated BMs.

3.
J Microbiol Biotechnol ; 33(7): 973-979, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37100763

ABSTRACT

Lycopene is a carotenoid widely used as a food and feed supplement due to its antioxidant, anti-inflammatory, and anti-cancer functions. Various metabolic engineering strategies have been implemented for high lycopene production in Escherichia coli, and for this purpose it was essential to select and develop an E. coli strain with the highest potency. In this study, we evaluated 16 E. coli strains to determine the best lycopene production host by introducing a lycopene biosynthetic pathway (crtE, crtB, and crtI genes cloned from Deinococcus wulumuqiensis R12 and dxs, dxr, ispA, and idi genes cloned from E. coli). The 16 lycopene strain titers diverged from 0 to 0.141 g/l, with MG1655 demonstrating the highest titer (0.141 g/l), while the SURE and W strains expressed the lowest (0 g/l) in an LB medium. When a 2 × YTg medium replaced the MG1655 culture medium, the titer further escalated to 1.595 g/l. These results substantiate that strain selection is vital in metabolic engineering, and further, that MG1655 is a potent host for producing lycopene and other carotenoids with the same lycopene biosynthetic pathway.


Subject(s)
Carotenoids , Escherichia coli , Lycopene/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Carotenoids/metabolism , Antioxidants/metabolism , Metabolic Engineering
4.
Int J Mol Sci ; 24(2)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36674707

ABSTRACT

In anticancer therapy, combination therapy has been suggested as an alternative to the insufficient therapeutic efficacy of single therapy. Among combination therapies, combination chemo- and photodynamic therapy are actively investigated. However, photodynamic therapy shows a limitation in the penetration depth of the laser. Therefore, sonodynamic therapy (SDT), using ultrasound instead of a laser as a trigger, is an upcoming strategy for deep tumors. Additionally, free drugs are easily degraded by enzymes, have difficulty in reaching the target site, and show side effects after systemic administration; therefore, the development of drug delivery systems is desirable for sufficient drug efficacy for combination therapy. However, nanocarriers, such as microbubbles, and albumin nanoparticles, are unstable in the body and show low drug-loading efficiency. Here, we propose polylactide (PLA)-poly (ethylene glycol) (PEG) polymersomes (PLs) with a high drug loading rate of doxorubicin (DOX) and verteporfin (VP) for effective combination therapy in both in vitro and in vivo experiments. The cellular uptake efficiency and cytotoxicity test results of VP-DOX-PLs were higher than that of single therapy. Moreover, in vivo biodistribution showed the accumulation of the VP-DOX-PLs in tumor regions. Therefore, VP-DOX-PLs showed more effective anticancer efficacy than either single therapy in vivo. These results suggest that the combination therapy of SDT and chemotherapy could show novel anticancer effects using VP-DOX-PLs.


Subject(s)
Nanomedicine , Nanoparticles , Tissue Distribution , Cell Line, Tumor , Drug Delivery Systems , Doxorubicin/pharmacology , Polyethylene Glycols , Verteporfin
5.
J Microbiol ; 60(9): 960-967, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35835960

ABSTRACT

In protein biotechnology, large soluble fusion partners are widely utilized for increased yield and solubility of recombinant proteins. However, the production of additional large fusion partners poses an additional burden to the host, leading to a decreased protein yield. In this study, we identified two highly disordered short peptides that were able to increase the solubility of an artificially engineered aggregation-prone protein, GFP-GFIL4, from 0.6% to 61% (D3-DP00592) and 46% (D4-DP01038) selected from DisProt database. For further confirmation, the peptides were applied to two insoluble E. coli proteins (YagA and YdiU). The peptides also enhanced solubility from 52% to 90% (YagA) and from 27% to 93% (YdiU). Their ability to solubilize recombinant proteins was comparable with strong solubilizing tags, maltose-binding protein (40 kDa) and TrxA (12 kDa), but much smaller (< 7 kDa) in size. For practical application, the two peptides were fused with a restriction enzyme, I-SceI, and they increased I-SceI solubility from 24% up to 75%. The highly disordered peptides did not affect the activity of I-SceI while I-SceI fused with MBP or TrxA displayed no restriction activity. Despite the small size, the highly disordered peptides were able to solubilize recombinant proteins as efficiently as conventional fusion tags and did not interfere with the function of recombinant proteins. Consequently, the identified two highly disordered peptides would have practical utility in protein biotechnology and industry.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/metabolism , Peptides/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Solubility
6.
Small Methods ; 5(8): e2100277, 2021 08.
Article in English | MEDLINE | ID: mdl-34927875

ABSTRACT

Surface-enhanced infrared absorption (SEIRA) spectroscopy is a powerful methodology for sensing and identifying small quantities of analyte molecules via coupling between molecular vibrations and an enhanced near-field induced in engineered structures. A metamaterial absorber (MA) is proposed as an efficient SEIRA platform; however, its efficiency is limited because it requires the appropriate insulator thickness and has a limited accessible area for sensing. SEIRA spectroscopy is proposed using an MA with a 10 nm thick vertical nanogap, and a record-high reflection difference SEIRA signal of 36% is experimentally achieved using a 1-octadecanethiol monolayer target molecule. Theoretical and experimental comparative studies are conducted using MAs with three different vertical nanogaps. The MAs with a vertical nanogap are processed using nanoimprint lithography and isotropic dry etching, which allow cost-effective large-area patterning and mass production. The proposed structure may provide promising routes for ultrasensitive sensing and detection applications.

7.
Bioresour Technol ; 248(Pt A): 79-87, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28684176

ABSTRACT

Among the various biological routes for H2 production, dark fermentation is considered the most practically applicable owing to its capability to degrade organic wastes and high H2 production rate. Food waste (FW) has high carbohydrate content and easily hydrolysable in nature, exhibiting higher H2 production potential than that of other organic wastes. In this review article, first, the current status of H2 production from FW by dark fermentation and the strategies applied for enhanced performance are briefly summarized. Then, the technical and economic limitations of dark fermentation of FW are thoroughly discussed. Economic assessment revealed that the economic feasibility of H2 production from FW by dark fermentation is questionable. Current efforts to further increase H2 yield and waste removal efficiency are also introduced. Finally, future perspectives along with possible routes converting dark fermentation effluent to valuable fuels and chemicals are discussed.


Subject(s)
Fermentation , Food , Hydrogen
9.
ACS Appl Mater Interfaces ; 7(32): 17904-9, 2015 08 19.
Article in English | MEDLINE | ID: mdl-26192469

ABSTRACT

A dye-doped polymer-dispersed liquid crystal (PDLC) is an attractive material for application in smart windows. Smart windows using a PDLC can be operated simply and have a high contrast ratio compared to those of other devices that employed photochromic or thermochromic material. However, in conventional dye-doped PDLC methods, dye contamination can cause problems and has a limited degree of commercialization of electric smart windows. Here, we report on an approach to resolve dye-related problems by encapsulating the dye in monodispersed capsules. By encapsulation, a fabricated dye-doped PDLC had a contrast ratio of >120 at 600 nm. This fabrication method of encapsulating the dye in a core-shell structured microcapsule in a dye-doped PDLC device provides a practical platform for dye-doped PDLC-based smart windows.

10.
J Gynecol Oncol ; 23(3): 182-9, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22808361

ABSTRACT

OBJECTIVE: To investigate the relationship between cisplatin resistance and histone deacetylase (HDAC) isoform overexpression in ovarian cancer cell lines. METHODS: Expression of four HDAC isoforms (HDAC 1, 2, 3, and 4) in two ovarian cancer cell lines, SKOV3 and OVCAR3, exposed to various concentrations of cisplatin was examined by western blot analyses. Cells were transfected with plasmid DNA of each HDAC. The overexpression of protein and mRNA of each HDAC was confirmed by western blot and reverse transcriptase-polymerase chain reaction analyses, respectively. The cell viability of the SKOV3 and OVCAR3 cells transfected with HDAC plasmid DNA was measured using the cell counting kit-8 assay after treatment with cisplatin. RESULTS: The 50% inhibitory concentration of the SKOV3 and OVCAR3 cells can be determined 15-24 hours after treatment with 15 µg/mL cisplatin. The expression level of acetylated histone 3 protein in SKOV3 cells increased after exposure to cisplatin. Compared with control cells at 24 hours after cisplatin exposure, the viability of SKOV3 cells overexpressing HDAC 1 and 3 increased by 15% and 13% (p<0.05), respectively. On the other hand, OVCAR3 cells that overexpressed HDAC 2 and 4 exhibited increased cell viability by 23% and 20% (p<0.05), respectively, compared with control cells 24 hours after exposure to cisplatin. CONCLUSION: In SKOV3 and OVCAR3 epithelial ovarian cancer cell lines, the correlation between HDAC overexpression and cisplatin resistance was confirmed. However, the specific HDAC isoform associated with resistance to cisplatin varied depending on the ovarian cancer cell line. These results may suggest that each HDAC isoform conveys cisplatin resistance via different mechanisms.

11.
Am J Reprod Immunol ; 67(5): 369-75, 2012 May.
Article in English | MEDLINE | ID: mdl-22122352

ABSTRACT

PROBLEM: The preventative value of progesterone in preterm labor has been recently recognized, especially when it is administered via vaginal suppository. This study was undertaken to evaluate the effect of progesterone on interleukin-6 (IL-6) production in human uterine cervical fibroblasts (UCFs) treated with lipopolysaccharides (LPS). METHOD OF STUDY: Human uterine cervical tissue was obtained at term, prior to the onset of labor, during the scheduled cesarean section or cesarean hysterectomy. Primary UCF cultures were established and confirmed by immunohistochemistry. IL-6 mRNA and protein expressions were examined by reverse-transcription polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. RESULTS: Lipopolysaccharides stimulation induced a clear time- and dose-dependent increase in IL-6 mRNA and protein levels in UCFs (P < 0.05). Progesterone treatment significantly attenuated LPS-induced increases in IL-6 mRNA and protein expressions in UCFs (P < 0.05). Estrogen exposure had no effect on LPS-induced IL-6 up-regulation and did not modulate the effects of progesterone. CONCLUSION: Our preliminary results suggest that vaginal progesterone might prevent spontaneous preterm labor through a mechanism involving anti-inflammatory effects on UCFs, particularly suppression of IL-6 production.


Subject(s)
Cervix Uteri/cytology , Fibroblasts/drug effects , Interleukin-6/immunology , Progesterone/pharmacology , Progestins/pharmacology , Cells, Cultured , Estrogens/pharmacology , Female , Fibroblasts/immunology , Humans , Interleukin-6/genetics , Lipopolysaccharides , Pregnancy , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...