Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters










Publication year range
2.
Biosens Bioelectron ; 255: 116259, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38574559

ABSTRACT

Carbon-based nanozymes possessing peroxidase-like activity have attracted significant interest because of their potential to replace native peroxidases in biotechnology. Although various carbon-based nanozymes have been developed, their relatively low catalytic efficiency needs to be overcome to realize their practical utilization. Here, inspired by the elemental uniqueness of Cu and the doped elements N and S, as well as the active site structure of Cu-centered oxidoreductases, we developed a new carbon-based peroxidase-mimicking nanozyme, single-atom Cu-centered N- and S-codoped reduced graphene oxide (Cu-NS-rGO), which preserved many Cu-N4 and Cu-N4S active sites and showed dramatically high peroxidase-like activity without any oxidase-like activity, yielding up to 2500-fold higher catalytic efficiency (kcat/Km) than that of pristine rGO. The high catalytic activity of Cu-NS-rGO might be attributed to the acceleration of electron transfer from Cu single atom as well as synergistic effects from both Cu-N4 and Cu-N4S active sites, which was theoretically confirmed by Gibbs free energy calculations using density functional theory. The prepared Cu-NS-rGO was then used to construct an electrochemical bioassay system for detecting choline and acetylcholine by coupling with the corresponding oxidases. Using this system, both target molecules were selectively determined with high sensitivity that was sufficient to clinically determine their levels in physiological fluids. Overall, this study will facilitate the development of nanocarbon-based nanozymes and their electrochemical biosensing applications, which can be extended to the development of miniaturized devices in point-of-care testing environments.


Subject(s)
Biosensing Techniques , Graphite , Peroxidase , Peroxidase/chemistry , Catalytic Domain , Peroxidases/chemistry , Oxidoreductases , Carbon/chemistry
3.
Biosensors (Basel) ; 14(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38667178

ABSTRACT

As a potent detection method for cancer biomarkers in physiological fluid, a colorimetric and electrochemical dual-mode sensing platform for breast cancer biomarker thioredoxin 1 (TRX1) was developed based on the excellent peroxidase-mimicking and electrocatalytic property of Prussian blue nanoparticles (PBNPs). PBNPs were hydrothermally synthesized using K3[Fe(CN)6] as a precursor and polyvinylpyrrolidone (PVP) as a capping agent. The synthesized spherical PBNPs showed a significant peroxidase-like activity, having approximately 20 and 60% lower Km values for 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2, respectively, compared to those of horseradish peroxidase (HRP). The PBNPs also enhanced the electron transfer on the electrode surface. Based on the beneficial features, PBNPs were used to detect target TRX1 via sandwich-type immunoassay procedures. Using the strategies, TRX1 was selectively and sensitively detected, yielding limit of detection (LOD) values as low as 9.0 and 6.5 ng mL-1 via colorimetric and electrochemical approaches, respectively, with a linear range of 10-50 ng mL-1 in both strategies. The PBNP-based TRX1 immunoassays also exhibited a high degree of precision when applied to real human serum samples, demonstrating significant potentials to replace conventional HRP-based immunoassay systems into rapid, robust, reliable, and convenient dual-mode assay systems which can be widely utilized for the identification of important target molecules including cancer biomarkers.


Subject(s)
Benzidines , Biosensing Techniques , Colorimetry , Electrochemical Techniques , Ferrocyanides , Nanoparticles , Thioredoxins , Ferrocyanides/chemistry , Humans , Nanoparticles/chemistry , Limit of Detection , Hydrogen Peroxide , Catalysis , Peroxidase/chemistry , Immunoassay
4.
Biosens Bioelectron ; 246: 115882, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38043302

ABSTRACT

Hydrolase-mimicking nanozymes have received increasing attention in recent years, but the effective rational design and development of these materials has not been realized, as they are not at present considered a critical research target. Herein, we report that Zn-doped mesoporous ceria (Zn-m-ceria) engineered to have an abundance of two different active sites with different functions-one that allows both co-adsorption binding of organophosphate (OP) and water and another that serves as a general base-has significant organophosphorus hydrolase (OPH)-like catalytic activity. Specifically, Zn-m-ceria exhibits a catalytic efficiency over 75- and 25-fold higher than those of m-ceria and natural OPH, respectively. First-principles calculations reveal the importance of Zn for the OPH-mimicking activity of the material, promoting substrate adsorption and proton-binding. The OPH-like Zn-m-ceria catalyst is successfully applied to detect a model OP, methyl paraoxon, in spiked tap water samples with excellent sensitivity, stability, and detection precision. We expect that these findings will promote research based on the rational engineering of the active site of nanozymes and efficient strategies for obtaining a diverse range of catalysts that mimic natural enzymes, and hence the utilization in real-world applications of enzyme-mimicking catalysts with properties superior to their natural analogs should follow.


Subject(s)
Aryldialkylphosphatase , Biosensing Techniques , Aryldialkylphosphatase/chemistry , Catalytic Domain , Organophosphates , Water , Zinc
5.
Biosensors (Basel) ; 13(12)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38131775

ABSTRACT

The accurate and simultaneous detection of neurotransmitters, such as dopamine (DA) and epinephrine (EP), is of paramount importance in clinical diagnostic fields. Herein, we developed cerium-molybdenum disulfide nanoflowers (Ce-MoS2 NFs) using a simple one-pot hydrothermal method and demonstrated that they are highly conductive and exhibit significant peroxidase-mimicking activity, which was applied for the simultaneous electrochemical detection of DA and EP. Ce-MoS2 NFs showed a unique structure, comprising MoS2 NFs with divalent Ce ions. This structural design imparted a significantly enlarged surface area of 220.5 m2 g-1 with abundant active sites as well as enhanced redox properties, facilitating electron transfer and peroxidase-like catalytic action compared with bare MoS2 NFs without Ce incorporation. Based on these beneficial features, Ce-MoS2 NFs were incorporated onto a screen-printed electrode (Ce-MoS2 NFs/SPE), enabling the electrochemical detection of H2O2 based on their peroxidase-like activity. Ce-MoS2 NFs/SPE biosensors also showed distinct electrocatalytic oxidation characteristics for DA and EP, consequently yielding the highly selective, sensitive, and simultaneous detection of target DA and EP. Dynamic linear ranges for both DA and EP were determined to be 0.05~100 µM, with detection limits (S/N = 3) of 28 nM and 44 nM, respectively. This study shows the potential of hierarchically structured Ce-incorporated MoS2 NFs to enhance the detection performances of electrochemical biosensors, thus enabling extensive applications in healthcare, diagnostics, and environmental monitoring.


Subject(s)
Dopamine , Peroxidase , Molybdenum/chemistry , Hydrogen Peroxide , Peroxidases , Epinephrine , Electrochemical Techniques/methods
6.
Mikrochim Acta ; 190(12): 473, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37987844

ABSTRACT

The proteolytic enzyme ficin exhibits peroxidase-like activity but it is low and insufficient for real applications. Herein, we developed ficin-copper hybrid nanoflowers and demonstrated that they have significantly enhanced peroxidase-like activity of over 6-fold higher than that of free ficin, with one of the lowest Km and highest kcat values among all reported ficin-based peroxidase-like nanozymes. This was most likely caused by the synergistic catalysis of co-existing ficin and crystalline copper phosphate within nanoflower matrices having a large surface area. The nanoflowers were easily prepared by incubating ficin and copper sulfate at ambient temperature, causing coordination interactions between ficin's amine/amide moieties and copper ions, followed by concomitant anisotropic growth of petals composed of copper phosphate crystals with ficin. When compared to free ficin and natural horseradish peroxidase, the resulting nanoflowers' affinity toward H2O2 was greatly increased, yielding Km values of half and one-tenth, respectively, as well as noticeably improved stability. The nanoflowers were then applied to colorimetric determination of biological thiols (biothiols), such as cysteine (Cys), glutathione (GSH), and homocysteine (Hcy), based on their inhibition of nanoflowers' peroxidase-like activity, producing reduced color intensities as the concentration of biothiols increased. This strategy achieved highly sensitive colorimetric determinations of Cys, GSH, and Hcy after only 25-min incubation. Additionally, using this technique, biothiols in human serum were successfully determined with excellent precision, suggesting the potential application of this technology in clinical settings, particularly in point-of-care testing environments.


Subject(s)
Copper , Ficain , Humans , Colorimetry , Hydrogen Peroxide , Glutathione , Cysteine , Homocysteine , Phosphates
7.
Nanomaterials (Basel) ; 13(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37686952

ABSTRACT

We report a fluorescent assay for the determination of vitamin B12 (VB12) based on the inner filter effect (IFE) of 1,3-propanedithiol-functionalized silver nanoparticles (PDT-AgNPs). PDT was simply functionalized on the surface of AgNPs through Ag-thiol interaction, which leads to significantly enhanced fluorescence, with excitation and emission at 360 and 410 nm, respectively, via their thiol-mediated aggregation. Since target VB12 has strong absorption centered at 360 nm, which is almost completely overlapping with the excitation spectra of PDT-AgNPs, the VB12 induced strong quenching of the fluorescence of PDT-AgNPs via IFE. The IFE-based mechanism for the fluorescence quenching of PDT-AgNPs in the presence of VB12 was confirmed by the analyses of Stern-Volmer plots at different temperatures and fluorescence decay curves. The fluorescence-quenching efficiency of PDT-AgNPs was linearly proportional to the concentration of VB12 in a wide range of 1 to 50 µM, with a lower detection limit of 0.5 µM, while preserving excellent selectivity toward target VB12 among possible interfering molecules. Furthermore, the PDT-AgNPs-mediated assay succeeded in quantitatively detecting VB12 in drug tablets, indicating that PDT-AgNPs can serve as an IFE-based fluorescent probe in pharmaceutical preparations by taking advantages of its ease of use, rapidity, and affordability.

8.
Analyst ; 148(11): 2536-2543, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37144330

ABSTRACT

Microcystin-LR (MC-LR) is a hepatotoxin generated by the excessive proliferation of cyanobacteria, which is a threat to humans and wildlife. Therefore, rapid detection of MC-LR is an important challenge. This study describes a rapid electrochemical biosensor comprising nanozymes and aptamers. Alternating current electrothermal flow (ACEF) significantly reduced the MC-LR detection period to 10 min. We also used MnO2/MC-LR aptamer conjugates to improve the sensitivity to MC-LR detection. Here, MnO2 amplified the electrochemical signal and the aptamer showed high selectivity for MC-LR. Under the optimal conditions, the limit of detection (LOD) and selectivity in freshwater were detected using cyclic voltammetry and differential pulse voltammetry. As a result, an LOD of 3.36 pg mL-1 was observed in the linear concentration range of 10 pg mL-1 to 1 µg mL-1. This study quickly and sensitively detected MC-LR in a situation where it causes serious damage worldwide. In addition, the ACEF technology introduction is the first example of MC-LR detection, suggesting a wide range of possibilities for MC-LR biosensors.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Humans , Microcystins , Manganese Compounds , Oxides
9.
Biosensors (Basel) ; 12(11)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36354488

ABSTRACT

Nucleic acid aptamer-based research has focused on achieving the highest performance for bioassays. However, there are limitations in evaluating the affinity for the target analytes in these nucleic acid aptamer-based bioassays. In this study, we mainly propose graphene oxide (GO)-based electrical and optical analyses to efficiently evaluate the affinity between an aptamer and its target. We found that an aptamer-coupled GO-based chip with an electrical resistance induced by a field-effect transistor, with aptamers as low as 100 pM, can detect the target, thrombin, at yields as low as 250 pM within five minutes. In the optical approach, the fluorescent dye-linked aptamer, as low as 100 nM, was efficiently used with GO, enabling the sensitive detection of thrombin at yields as low as 5 nM. The cantilever type of mechanical analysis also demonstrated the intuitive aptamer-thrombin reaction in the signal using dBm units. Finally, a comparison of electrical and optical sensors' characteristics was introduced in the attachment and detachment of aptamer to propose an efficient analysis that can be utilized for various aptamer-based research fields.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Graphite , Nucleic Acids , Thrombin/analysis , Limit of Detection
10.
Biosensors (Basel) ; 12(11)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36421165

ABSTRACT

Surface engineering of nanozymes has been recognized as a potent strategy to improve their catalytic activity and specificity. We synthesized polydopamine-coated Co3O4 nanoparticles (PDA@Co3O4 NPs) through simple dopamine-induced self-assembly and demonstrated that these NPs exhibit catalase-like activity by decomposing H2O2 into oxygen and water. The activity of PDA@Co3O4 NPs was approximately fourfold higher than that of Co3O4 NPs without PDA, possibly due to the additional radical scavenging activity of the PDA shell. In addition, PDA@Co3O4 NPs were more stable than natural catalase under a wide range of pH, temperature, and storage time conditions. Upon the addition of a sample containing sulfide ion, the activity of PDA@Co3O4 NPs was significantly inhibited, possibly because of increased mass transfer limitations via the absorption of the sulfide ion on the PDA@Co3O4 NP surface, along with NP aggregation which reduced their surface area. The reduced catalase-like activity was used to determine the levels of sulfide ion by measuring the increased fluorescence of the oxidized terephthalic acid, generated from the added H2O2. Using this strategy, the target sulfide ion was sensitively determined to a lower limit of 4.3 µM and dynamic linear range of up to 200 µM. The fluorescence-based sulfide ion assay based on PDA@Co3O4 NPs was highly precise when applied to real tap water samples, validating its potential for conveniently monitoring toxic elements in the environment.


Subject(s)
Hydrogen Peroxide , Nanoparticles , Catalase , Water , Sulfides
11.
J Nanobiotechnology ; 20(1): 358, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35918697

ABSTRACT

BACKGROUND: Laccase-based biosensors are efficient for detecting phenolic compounds. However, the instability and high cost of laccases have hindered their practical utilization. RESULTS: In this study, we developed hierarchical manganese dioxide-copper phosphate hybrid nanoflowers (H-Mn-Cu NFs) as excellent laccase-mimicking nanozymes. To synthesize the H-Mn-Cu NFs, manganese dioxide nanoflowers (MnO2 NFs) were first synthesized by rapidly reducing potassium permanganate using citric acid. The MnO2 NFs were then functionalized with amine groups, followed by incubation with copper sulfate for three days at room temperature to drive the coordination interaction between the amine moieties and copper ions and to induce anisotropic growth of the petals composed of copper phosphate crystals, consequently yielding H-Mn-Cu NFs. Compared with those of free laccase, at the same mass concentration, H-Mn-Cu NFs exhibited lower Km (~ 85%) and considerably higher Vmax (~ 400%), as well as significantly enhanced stability in the ranges of pH, temperature, ionic strength, and incubation periods evaluated. H-Mn-Cu NFs also catalyzed the decolorization of diverse dyes considerably faster than the free laccase. Based on these advantageous features, a paper microfluidic device incorporating H-Mn-Cu NFs was constructed for the convenient visual detection of phenolic neurotransmitters, including dopamine and epinephrine. The device enabled rapid and sensitive quantification of target neurotransmitters using an image acquired using a smartphone. CONCLUSIONS: These results clearly show that H-Mn-Cu NFs could be potential candidates to replace natural laccases for a wide range of applications in biosensing, environmental protection, and biotechnology.


Subject(s)
Laccase , Manganese Compounds , Amines , Coloring Agents/chemistry , Copper/chemistry , Laccase/chemistry , Manganese Compounds/chemistry , Neurotransmitter Agents , Oxides/chemistry , Phenols , Phosphates
12.
Anal Bioanal Chem ; 414(10): 3257-3265, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35029693

ABSTRACT

During the recent several decades, lateral flow immunoassay (LFIA) constructed with gold nanoparticle (AuNP) has been widely utilized to conveniently detect target analyte. However, AuNP-based LFIA has limitations, such as limited detection sensitivity and quantification capability. Herein, to overcome these constraints, we have developed cerium oxide nanoparticle (nanoceria)-based LFIA for C-reactive protein (CRP) detection in human serum samples. It was fabricated with nanoceria, a notable nanozyme that shows an oxidase activity to quickly oxidize organic substrate, such as 3,3',5,5'-tetramethylbenzidine (TMB), to produce colored product without any oxidizing agent (e.g., hydrogen peroxide), which is advantageous for realizing point-of-care testing (POCT) applications. By employing human blood serum spiked with CRP, the nanoceria-based LFIA showed two blue-colored lines on the test and control region within 3 min via TMB oxidation, by the captured nanoceria through antigen-antibody interaction. The produced blue-colored lines were distinguished by naked eyes and quantitated with real images acquired by a conventional smartphone with the ImageJ software. With this strategy, target CRP was specifically determined down to 117 ng mL-1 with high detection precisions yielding coefficient of variation of 9.8-11.3% and recovery of 90.7-103.2% using human blood serum samples. This investigation demonstrates the potential of oxidase-like nanoceria for developing LFIA, which is particularly useful in instrumentation-free POCT environments.


Subject(s)
Colorimetry , Metal Nanoparticles , C-Reactive Protein , Cerium , Gold , Humans , Hydrogen Peroxide , Immunoassay
13.
Chemosphere ; 288(Pt 2): 132584, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34656629

ABSTRACT

Mercury (Hg) emissions are increasing annually owing to rapid global industrialization. Hg poisoning can severely affect the human body owing to its persistence and bioaccumulation. In this study, hybrid nanoflowers (NFs) were synthesized by promoting the formation of primary copper-phosphate crystals coordinated with polydopamine (PDA) and Fe3O4 magnetic nanoparticles (MNPs), followed by coating with silver nanoparticles on the surface of the NFs (Ag-MNP-PDA-Cu NFs). The results suggest that the hierarchical structure of the NFs enabled a large surface area with nanosized pores, which were exploited for Hg adsorption. The adsorbed Hg ions could be further eliminated from the solution based on the magnetic characteristics of the NFs. Additionally, hybrid NFs functionalized with Hg2+-binding aptamers (Apt-Ag-MNP-PDA-Cu NFs) were prepared based on the silver-sulfur interactions between the Ag-MNP-PDA-Cu NFs and thiol-modified aptamers. The performance of both adsorbents demonstrated that the immobilization of Hg2+-binding aptamers significantly improved the elimination of Hg from solution. The Hg2+ adsorption isotherm of the Apt-Ag-MNP-PDA-Cu NFs followed the Dubinin-Radushkevich model, with a maximum adsorption capacity of 1073.19 mg/g. The Apt-Ag-MNP-PDA-Cu NFs adsorbed greater amounts of Hg2+ than the non-functionalized NFs at the same concentrations, which confirmed that the functionalization of Hg2+-binding aptamers on the NFs improved the Hg2+ removal performance. The results suggest that Apt-Ag-MNP-PDA-Cu NFs could serve as an efficient Hg-removing adsorbent, possibly by providing binding sites for the formation of T-Hg2+-T complexes.


Subject(s)
Magnetite Nanoparticles , Mercury , Copper , Humans , Indoles , Polymers , Silver
14.
Nanomicro Lett ; 13(1): 193, 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34515917

ABSTRACT

Nanomaterial-based artificial enzymes (or nanozymes) have attracted great attention in the past few years owing to their capability not only to mimic functionality but also to overcome the inherent drawbacks of the natural enzymes. Numerous advantages of nanozymes such as diverse enzyme-mimicking activities, low cost, high stability, robustness, unique surface chemistry, and ease of surface tunability and biocompatibility have allowed their integration in a wide range of biosensing applications. Several metal, metal oxide, metal-organic framework-based nanozymes have been exploited for the development of biosensing systems, which present the potential for point-of-care analysis. To highlight recent progress in the field, in this review, more than 260 research articles are discussed systematically with suitable recent examples, elucidating the role of nanozymes to reinforce, miniaturize, and improve the performance of point-of-care diagnostics addressing the ASSURED (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable to the end user) criteria formulated by World Health Organization. The review reveals that many biosensing strategies such as electrochemical, colorimetric, fluorescent, and immunological sensors required to achieve the ASSURED standards can be implemented by using enzyme-mimicking activities of nanomaterials as signal producing components. However, basic system functionality is still lacking. Since the enzyme-mimicking properties of the nanomaterials are dictated by their size, shape, composition, surface charge, surface chemistry as well as external parameters such as pH or temperature, these factors play a crucial role in the design and function of nanozyme-based point-of-care diagnostics. Therefore, it requires a deliberate exertion to integrate various parameters for truly ASSURED solutions to be realized. This review also discusses possible limitations and research gaps to provide readers a brief scenario of the emerging role of nanozymes in state-of-the-art POC diagnosis system development for futuristic biosensing applications.

15.
Mikrochim Acta ; 188(9): 293, 2021 08 07.
Article in English | MEDLINE | ID: mdl-34363539

ABSTRACT

Hybrid nanoflowers consisting of graphitic carbon nitride (GCN) and copper were successfully constructed without the involvement of any biomolecule, by simply mixing them at room temperature to induce proper self-assembly to achieve a flower-like morphology. The resulting biomolecule-free GCN-copper hybrid nanoflowers (GCN-Cu NFs) exhibited an apparent peroxidase-mimicking activity, possibly owing to the synergistic effect from the coordination of GCN and copper, as well as their large surface area, which increased the number of catalytic reaction sites. The peroxidase-mimicking GCN-Cu NFs were then employed in the colorimetric determination of selected phenolic compounds hydroquinone (HQ), methylhydroquinone (MHQ), and catechol (CC). For samples without phenolic compounds, GCN-Cu NFs catalyzed the oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2, producing an intense blue color signal. Conversely, in the presence of phenolic compounds, the oxidation of TMB was inhibited, resulting in a significant reduction of the color signal. Using this strategy, HQ, MHQ, and CC were selectively and sensitively determined in a linear range up to 100 µM with detection limits down to 0.82, 0.27, and 0.36 µM, respectively. The practical utility of this assay system was also validated by using it to detect phenolic compounds spiked in tap water, yielding a good recovery of 97.1-108.9% and coefficient of variation below 3.0%, demonstrating the excellent reliability and reproducibility of this strategy. Colorimetric determination of phenolic compounds using peroxidase mimics based on biomolecule-free hybrid nanoflowers consisting of graphitic carbon nitride and copper.


Subject(s)
Biosensing Techniques/methods , Colorimetry/methods , Graphite/chemistry , Hydrogen Peroxide/chemistry , Nanoparticles/chemistry , Nitrogen Compounds/chemistry , Peroxidase/chemistry , Humans
16.
Biosensors (Basel) ; 11(8)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34436054

ABSTRACT

Amino acid arrays comprising bioluminescent amino acid auxotrophic Escherichia coli are effective systems to quantitatively determine multiple amino acids. However, there is a need to develop a method for convenient long-term preservation of the array to enable its practical applications. Here, we reported a potential strategy to efficiently maintain cell viability within the portable array. The method involves immobilization of cells within agarose gel supplemented with an appropriate cryoprotectant in individual wells of a 96-well plate, followed by storage under freezing conditions. Six cryoprotectants, namely dimethyl sulfoxide, glycerol, ethylene glycol, polyethylene glycol, sucrose, and trehalose, were tested in the methionine (Met) auxotroph-based array. Carbohydrate-type cryoprotectants (glycerol, sucrose, and trehalose) efficiently preserved the linearity of determination of Met concentration. In particular, the array with 5% trehalose exhibited the best performance. The Met array with 5% trehalose could determine Met concentration with high linearity (R2 value = approximately 0.99) even after storage at -20 °C for up to 3 months. The clinical utilities of the Met and Leu array, preserved at -20 °C for 3 months, were also verified by successfully quantifying Met and Leu in spiked blood serum samples for the diagnosis of the corresponding metabolic diseases. This long-term preservation protocol enables the development of a ready-to-use bioluminescent E. coli-based amino acid array to quantify multiple amino acids and can replace the currently used laborious analytical methods.


Subject(s)
Escherichia coli , Protein Array Analysis , Trehalose , Amino Acids , Cryopreservation , Cryoprotective Agents , Glycerol , Luminescent Proteins , Sucrose
17.
Nanomaterials (Basel) ; 11(8)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34443946

ABSTRACT

The appearance and evolution of biofuel cells can be categorized into three groups: microbial biofuel cells (MBFCs), enzymatic biofuel cells (EBFCs), and enzyme-like nanomaterial (nanozyme)-based biofuel cells (NBFCs). MBFCs can produce electricity from waste; however, they have significantly low power output as well as difficulty in controlling electron transfer and microbial growth. EBFCs are more productive in generating electricity with the assistance of natural enzymes, but their vulnerability under diverse environmental conditions has critically hindered practical applications. In contrast, because of the intrinsic advantages of nanozymes, such as high stability and robustness even in harsh conditions, low synthesis cost through facile scale-up, and tunable catalytic activity, NBFCs have attracted attention, particularly for developing wearable and implantable devices to generate electricity from glucose in the physiological fluids of plants, animals, and humans. In this review, recent studies on NBFCs, including the synthetic strategies and catalytic activities of metal and metal oxide-based nanozymes, the mechanism of electricity generation from glucose, and representative studies are reviewed and discussed. Current challenges and prospects for the utilization of nanozymes in glucose biofuel cells are also discussed.

18.
Front Chem ; 9: 669515, 2021.
Article in English | MEDLINE | ID: mdl-34295874

ABSTRACT

As a non-covalent interaction of a chiral scaffold in catalysis, pnicogen bonding of epi-cinchonidine (epi-CD), a cinchona alkaloid, was simulated to consider whether the interaction can have the potential controlling enantiotopic face like hydrogen bonding. Among five reactive functional groups in epi-CD, two stable complexes of the hydroxyl group (X-epi-CD1) at C17 and of the quinoline ring (X-epi-CD2) at N16 with pnictide family analytes [X = substituted phosphine (PX), i.e., F, Br, Cl, CF3, CN, HO, NO2, and CH3, and pnictide family analytes, i.e., PBr3, BiI3, SbI3, and AsI3] were predicted with intermolecular interaction energies, charge transfer (QMulliken and QNBO), and band gap energies of HOMO-LUMO (Eg) at the B3LYP/6-31G(d,p) level of density functional theory. It was found that the dominant site of pnicogen bonding in epi-CD is the quinoline ring (N16 atom) rather than the hydroxyl group (O36 atom). In addition, the UV-Vis spectra of the complex were calculated by time-dependent density functional theory (TD-DFT) at the B3LYP/6-31+G(d,p) level and compared with experimental measurements. Through these calculations, two intermolecular interactions (H-bond vs. pnicogen bond) of epi-CD were compared.

19.
Nanomaterials (Basel) ; 11(5)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062948

ABSTRACT

Inspired by the active site structure of natural horseradish peroxidase having iron as a pivotal element with coordinated histidine residues, we have developed histidine coated magnetic nanoparticles (His@MNPs) with relatively uniform and small sizes (less than 10 nm) through one-pot heat treatment. In comparison to pristine MNPs and other amino acid coated MNPs, His@MNPs exhibited a considerably enhanced peroxidase-imitating activity, approaching 10-fold higher in catalytic reactions. With the high activity, His@MNPs then were exploited to detect the important neurotransmitter acetylcholine. By coupling choline oxidase and acetylcholine esterase with His@MNPs as peroxidase mimics, target choline and acetylcholine were successfully detected via fluorescent mode with high specificity and sensitivity with the limits of detection down to 200 and 100 nM, respectively. The diagnostic capability of the method is demonstrated by analyzing acetylcholine in human blood serum. This study thus demonstrates the potential of utilizing His@MNPs as peroxidase-mimicking nanozymes for detecting important biological and clinical targets with high sensitivity and reliability.

20.
Biomed Mater ; 16(4)2021 06 08.
Article in English | MEDLINE | ID: mdl-34038877

ABSTRACT

The use of composites such as hydroxyapatite (HA)/TiO2in bioapplications has attracted increasing attention in recent years. Herein, for the enhancement wetting ability and biocompatibility, the HA/TiO2composite was subjected to different treatments to improve nanoparticle (NP) distribution and surface energy with an aim of mitigating nanotoxicity concerns. The treatments included ultrasonication, high-temperature annealing, and addition of a dispersant and surfactant, sodium dodecylbenzenesulfonate (SDBS). Contact angle measurement tests revealed the effect of SDBS addition on the distribution of TiO2NPs on the HA surface: a decrease in the contact angle and, thus, an increase in the wetting ability of the HA/TiO2composite were observed. The combination of annealing and SDBS addition treatments allowed for guest TiO2particles to be uniformly distributed on the surface of the host HA particles, showing a rapid conversion from a hydrophobic to superhydrophilic property.In vitroinvestigation suggested that the cell viabilities of annealed HA/TiO2, SDBS-added HA/TiO2, and SDBS-added and annealed HA/TiO2reached 89.7%, 94.7%, and 95.8%, respectively, while those of HA and untreated HA/TiO2were 80.3% and 86.9%, respectively. The modified composites exhibited lower cytotoxicities than the unmodified systems (HA and HA/TiO2). Furthermore, the cell adhesion behavior of the composites was confirmed through actin-4',6-Diamidino-2-phenylindole (DAPI) staining, which showed negligible changes in the cytoskeleton architecture of the cells. This study confirmed that a modified HA/TiO2composite has potential for bioapplications.


Subject(s)
Benzenesulfonates/chemistry , Durapatite , Nanostructures/chemistry , Surface-Active Agents/chemistry , Titanium , Cell Survival , Drug Stability , Durapatite/chemistry , Durapatite/pharmacokinetics , Durapatite/pharmacology , HeLa Cells , Hot Temperature , Humans , Materials Testing , Sonication , Titanium/chemistry , Titanium/pharmacokinetics , Titanium/pharmacology , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...