Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
MAbs ; 14(1): 2013750, 2022.
Article in English | MEDLINE | ID: mdl-35090381

ABSTRACT

TIGIT is an immune checkpoint receptor that is expressed on subsets of activated T cells and natural killer (NK) cells. Several ligands for TIGIT, including poliovirus receptor (PVR), are expressed on cancer cells and mediate inhibitory signaling to suppress antitumor activities of the immune cells. Many studies support that the TIGIT signaling is a potential target for cancer immunotherapy. We developed an IgG4-type monoclonal antibody against human TIGIT, designated as MG1131, using a phage display library of single-chain variable fragments (scFvs). MG1131 interacts with TIGIT much more tightly than PVR does. The crystal structure of a scFv version of MG1131 bound to TIGIT was determined, showing that MG1131 could block the PVR-TIGIT interaction and thus the immunosuppressive signaling of TIGIT. Consistently, MG1131 is bound to TIGIT-expressing cells and interferes with PVR binding to these cells. Moreover, MG1131 increased NK cell-mediated tumor killing activities, inhibited immunosuppressive activity of regulatory T (Treg) cells from healthy donors, and restored interferon-γ secretion from peripheral blood mononuclear cells derived from multiple myeloma patients. MG1131 also increased T cell infiltration to the tumor site and inhibited tumor growth in mice. Collectively, these data indicate that MG1131 modulates the effector functions of T cells and NK cells positively and Treg cells negatively.


Subject(s)
Antibodies, Neutralizing/immunology , Cell Surface Display Techniques , Receptors, Immunologic/antagonists & inhibitors , Single-Chain Antibodies/immunology , Antibodies, Neutralizing/genetics , Humans , Receptors, Immunologic/immunology , Single-Chain Antibodies/genetics
2.
Front Immunol ; 12: 778829, 2021.
Article in English | MEDLINE | ID: mdl-34868052

ABSTRACT

Since the coronavirus disease outbreak in 2019, several antibody therapeutics have been developed to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Antibody therapeutics are effective in neutralizing the virus and reducing hospitalization in patients with mild and moderate infections. These therapeutics target the spike protein of SARS-CoV-2; however, emerging mutations in this protein reduce their efficiency. In this study, we developed a universal SARS-CoV-2 neutralizing antibody. We generated a humanized monoclonal antibody, MG1141A, against the receptor-binding domain of the spike protein through traditional mouse immunization. We confirmed that MG1141A could effectively neutralize live viruses, with an EC50 of 92 pM, and that it exhibited effective Fc-mediated functions. Additionally, it retained its neutralizing activity against the alpha (UK), beta (South Africa), and gamma (Brazil) variants of SARS-CoV-2. Taken together, our study contributes to the development of a novel antibody therapeutic approach, which can effectively combat emerging SARS-CoV-2 mutations.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Antibody Affinity , Complementarity Determining Regions/chemistry , Epitopes , Humans , Immunization , Mice , Molecular Docking Simulation , Protein Interaction Domains and Motifs , Receptors, IgG/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
3.
Sci Rep ; 10(1): 17753, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33082438

ABSTRACT

As recent advancements in the chimeric antigen receptor-T cells have revolutionized the way blood cancers are handled, potential benefits from producing off-the-shelf, standardized immune cells entail the need for development of allogeneic immune cell therapy. However, host rejection driven by HLA disparity in adoptively transferred allogeneic T cells remains a key obstacle to the universal donor T cell therapy. To evade donor HLA-mediated immune rejection, we attempted to eliminate T cell's HLA through the CRISPR/Cas9 gene editing system. First, we screened 60 gRNAs targeting B2M and multiple sets of gRNA each targeting α chains of HLA-II (DPA, DQA and DRA, respectively) using web-based design tools, and identified specific gRNA sequences highly efficient for target deletion without carrying off-target effects. Multiplex genome editing of primary human T cells achieved by the newly discovered gRNAs yielded HLA-I- or HLA-I/II-deficient T cells that were phenotypically unaltered and functionally intact. The overnight mixed lymphocyte reactions demonstrated the HLA-I-negative cells induced decreased production of IFN-γ and TNF-α in alloreactive T cells, and deficiency of HLA-I/II in T cells further dampened the inflammatory responses. Taken together, our approach will provide an efficacious pathway toward the universal donor cell generation by manipulating HLA expression in therapeutic T cells.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing , HLA Antigens/genetics , T-Lymphocytes/metabolism , CRISPR-Cas Systems , Humans
4.
Immunol Lett ; 198: 60-65, 2018 06.
Article in English | MEDLINE | ID: mdl-29709545

ABSTRACT

Dipeptidyl peptidase 9 (DPP9) is a ubiquitously expressed intracellular prolyl peptidase implicated in immunoregulation. However, its physiological relevance in the immune system remains largely unknown. We investigated the role of DPP9 enzyme in immune system by characterizing DPP9 knock-in mice expressing a catalytically inactive S729A mutant of DPP9 enzyme (DPP9ki/ki mice). DPP9ki/ki mice show reduced number of lymphoid and myeloid cells in fetal liver and postnatal blood but their hematopoietic cells are fully functional and able to reconstitute lymphoid and myeloid lineages even in competitive mixed chimeras. These studies demonstrate that inactivation of DPP9 enzymatic activity does not lead to any perturbations in mouse hematopoiesis.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Hematopoiesis/immunology , Hematopoietic Stem Cells/physiology , Cell Count , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Gene Knock-In Techniques , Hematopoietic Stem Cells/cytology , Lymphocytes/cytology , Myeloid Cells/cytology
5.
Dev Biol ; 439(1): 2, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29248438
6.
Dev Biol ; 431(2): 297-308, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28887018

ABSTRACT

Dipeptidyl peptidase 9 (DPP9) is an intracellular N-terminal post-proline-cleaving enzyme whose physiological function remains largely unknown. We investigated the role of DPP9 enzyme in vivo by characterizing knock-in mice expressing a catalytically inactive mutant form of DPP9 (S729A; DPP9ki/ki mice). We show that DPP9ki/ki mice die within 12-18h after birth. The neonatal lethality can be rescued by manual feeding, indicating that a suckling defect is the primary cause of neonatal lethality. The suckling defect results from microglossia, and is characterized by abnormal formation of intrinsic muscles at the distal tongue. In DPP9ki/ki mice, the number of occipital somite-derived migratory muscle progenitors, forming distal tongue intrinsic muscles, is reduced due to increased apoptosis. In contrast, intrinsic muscles of the proximal tongue and extrinsic tongue muscles, which derive from head mesoderm, develop normally in DPP9ki/ki mice. Thus, lack of DPP9 activity in mice leads to impaired tongue development, suckling defect and subsequent neonatal lethality due to impaired survival of a specific subset of migratory tongue muscle progenitors.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Muscle, Skeletal/cytology , Stem Cells/cytology , Stem Cells/enzymology , Tongue/cytology , Alanine/genetics , Animals , Animals, Newborn , Animals, Suckling , Catalytic Domain , Cell Count , Cell Survival , Mice , Mice, Transgenic , Muscle Development , Muscle Proteins/metabolism , Point Mutation/genetics , Receptors, CXCR4/metabolism , Serine/genetics , Tongue Diseases/pathology
7.
PLoS One ; 10(11): e0141231, 2015.
Article in English | MEDLINE | ID: mdl-26555339

ABSTRACT

Alport syndrome is a genetic disease of collagen IV (α3, 4, 5) resulting in renal failure. This study was designed to investigate sex-phenotype correlations and evaluate the contribution of macrophage infiltration to disease progression using Col4a3 knock out (Col4a3KO) mice, an established genetic model of autosomal recessive Alport syndrome. No sex differences in the evolution of body mass loss, renal pathology, biomarkers of tubular damage KIM-1 and NGAL, or deterioration of kidney function were observed during the life span of Col4a3KO mice. These findings confirm that, similar to human autosomal recessive Alport syndrome, female and male Col4a3KO mice develop renal failure at the same age and with similar severity. The specific contribution of macrophage infiltration to Alport disease, one of the prominent features of the disease in human and Col4a3KO mice, remains unknown. This study shows that depletion of kidney macrophages in Col4a3KO male mice by administration of clodronate liposomes, prior to clinical onset of disease and throughout the study period, does not protect the mice from renal failure and interstitial fibrosis, nor delay disease progression. These results suggest that therapy targeting macrophage recruitment to kidney is unlikely to be effective as treatment of Alport syndrome.


Subject(s)
Clodronic Acid/therapeutic use , Collagen Type IV/deficiency , Macrophages/drug effects , Nephritis, Hereditary/physiopathology , Animals , Apoptosis , Autoantigens/genetics , Clodronic Acid/administration & dosage , Clodronic Acid/pharmacology , Collagen Type IV/genetics , Disease Progression , Drug Evaluation, Preclinical , Female , Kidney/pathology , Kidney Failure, Chronic/etiology , Liposomes , Macrophages/pathology , Male , Mice , Mice, 129 Strain , Mice, Knockout , Models, Animal , Nephritis, Hereditary/drug therapy , Nephritis, Hereditary/genetics , Nephritis, Hereditary/immunology , Sex Characteristics
8.
Biochem Biophys Res Commun ; 445(1): 255-62, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24513286

ABSTRACT

Reversine has been shown to induce dedifferentiation of C2C12 murine myoblasts into multipotent progenitor cells. However, little is known about the key regulators mediating the dedifferentiation induced by reversine. Here, we show that large scale miRNA gene expression profiling of reversine-treated C2C12 myoblasts identifies a down-regulated miRNA, miR-133a, involved in dedifferentiation of myoblasts. Reversine treatment results in up- and down-regulated miRNA profiles. Among miRNAs affected by reversine, the level of muscle-specific miR-133a, which has been shown to be up-regulated during muscle development and to suppress differentiation into other lineages, is markedly reduced by treatment of C2C12 myoblasts with reversine. In parallel, reversine decreases the expression and recruitment of myogenic factor, SRF, to the enhancer regions of miR-133a. Sequentially, down-regulation of miR-133a by reversine is accompanied by a decrease in active histone modifications including trimethylation of histone H3K4 and H3K36, phosphorylation of H3S10, and acetylation of H3K14 on the miR-133a promoter, leading to dissociation of RNA polymerase II from the promoter. Furthermore, inhibition of miR-133a by transfection of C2C12 myoblasts with miR-133a inhibitor increases the expression of osteogenic lineage marker, Ogn, and adipotenic lineage marker, ApoE, similar to that in response to reversine. In contrast, the co-overexpression of miR-133a mimic reversed the effect of reversine on C2C12 myoblast dedifferentiation. Taken together, the results indicate that reversine induces a multipotency of C2C12 myoblasts by suppression of miR-133a expression through depletion of active histone modifications, and suggest that miR-133a is a potential miRNA regulating the reversine-induced dedifferentiation. Collectively, our findings provide a mechanistic rationale for the application of reversine to dedifferentiation of somatic cells.


Subject(s)
Epigenesis, Genetic/drug effects , Gene Silencing/drug effects , MicroRNAs/genetics , Morpholines/pharmacology , Multipotent Stem Cells/drug effects , Purines/pharmacology , Acetylation/drug effects , Animals , Blotting, Western , Cell Dedifferentiation/drug effects , Cell Dedifferentiation/genetics , Cell Line , Cell Lineage/drug effects , Cell Lineage/genetics , Gene Expression Profiling , Histones/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Methylation/drug effects , Mice , Multipotent Stem Cells/metabolism , Myoblasts/cytology , Myoblasts/drug effects , Myoblasts/metabolism , Oligonucleotide Array Sequence Analysis , Phosphorylation/drug effects , Promoter Regions, Genetic/genetics , Reverse Transcriptase Polymerase Chain Reaction , Serum Response Factor/genetics , Serum Response Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...