Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38675422

ABSTRACT

Lycii Radicis Cortex (LRC) is a traditional medicine in East Asia with various beneficial effects, including antioxidant, anti-inflammatory, anti-tumor, anti-diabetic, and anti-depressant properties. However, its potential effects on skeletal muscle atrophy have not been studied. In this study, the protective effects of LRC extract (LRCE) on dexamethasone (DEX)-induced muscle atrophy were investigated in C2C12 myotubes and mice. We evaluated the effect of LRCE on improving muscle atrophy using a variety of methods, including immunofluorescence staining, quantitative polymerase chain reaction (qPCR), Western blot, measurements of oxidative stress, apoptosis, ATP levels, and muscle tissue analysis. The results showed that LRCE improved myotube diameter, fusion index, superoxide dismutase (SOD) activity, mitochondrial content, ATP levels, expression of myogenin and myosin heavy chain (MHC), and reduced reactive oxygen species (ROS) production in dexamethasone-induced C2C12 myotubes. LRCE also enhanced protein synthesis and reduced protein degradation in the myotubes. In mice treated with DEX, LRCE restored calf thickness, decreased mRNA levels of muscle-specific RING finger protein 1 (MuRF1) and atrogin-1, and increased insulin-like growth factor 1 (IGF-1) mRNA level. Moreover, LRCE also repaired gastrocnemius muscle atrophy caused by DEX. Although human studies are not available, various preclinical studies have identified potential protective effects of LRCE against muscle atrophy, suggesting that it could be utilized in the prevention and treatment of muscle atrophy.

2.
Toxicol Res ; 38(4): 577-589, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36277358

ABSTRACT

Quisqualis indica L. of Combretaceae family is a traditional medicine that is widely used for various gastrointestinal discomfort including stomach pain, constipation, and digestive problem. In this study, the potential repeated dose toxicity and genotoxicity of a standardized Quisqualis indica L. extract (HU033) were determined under good laboratory practice conditions. For the repeated dose toxicity test, HU033 was orally administered to Sprague-Dawley (SD) rats at doses of 500, 1000, and 2000 mg/kg/day for 13 consecutive weeks. The genotoxicity of HU033 was determined with a standard battery of genotoxicity test, including an in vitro bacterial reverse mutation test, an in vitro chromosomal aberration test, and an in vivo micronucleus test. After 13 weeks of repeated dose of HU033 by oral administration, there was no treatment related adverse clinical sign including food consumption, organ weights, and histopathological findings or significant decrement in bodyweight. The no-observed-adverse-effect level of HU033 was higher than 2000 mg/kg in both male and female SD rats. No target organs were identified. In addition, no evidence of HU033 genotoxicity was detected based on results from the bacterial reverse mutation test, chromosomal aberration test, and micronucleus test. Based on results of this study, HU033 could be safely used in food and medical products within the tested dose range.

3.
Molecules ; 23(9)2018 Sep 06.
Article in English | MEDLINE | ID: mdl-30200578

ABSTRACT

Activity-guided separation of antioxidant response element (ARE)-inducing constituents from the rhizomes of Atractylodis Rhizoma Alba was performed by the combination of centrifugal partition chromatography (CPC) and an ARE luciferase reporter assay. From 3 g of the active n-hexane fraction, one polyacetylene, (6E,12E)-tetradeca-6,12-dien-8,10-diyne-1,3-diyl diacetate (47.3 mg), and two sesquiterpenes, atractylenolide I (40.9 mg), and selina-4(14),7(11)-dien-8-one (6.0 mg) were successfully isolated by CPC with n-hexane⁻ethyl acetate⁻methanol⁻water (8:2:8:2, v/v). The chemical structures of the isolated compounds were determined by ¹H- and 13C-NMR and ESI-MS. Among the isolated compounds, (6E,12E)-tetradeca-6,12-diene-8,10-diyne-1,3-diol diacetate and selina-4(14),7(11)-dien-8-one increased ARE activity 32.9-fold and 16.6-fold, respectively, without significant cytotoxicity, when 5 µM sulforaphane enhanced ARE activity 27.1-fold. However, atractylenolide I did not increase ARE activity at 100 µM, and showed cytotoxicity at concentrations over 10 µM.


Subject(s)
Antioxidant Response Elements , Drugs, Chinese Herbal/chemistry , Plant Extracts/chemistry , Rhizome/chemistry , Atractylodes/chemistry , Chromatography, Liquid , Molecular Structure
4.
Chem Biodivers ; 15(1)2018 Jan.
Article in English | MEDLINE | ID: mdl-29164786

ABSTRACT

Four new (1 - 4) and one known (5) acylated iridoid glycosides were isolated from the aerial parts of Veronicastrum sibiricum (L.) Pennell. The chemical structures of the isolated compounds were determined to be 3″,4″-dicinnamoyl-6-O-rhamnopyranosyl-10-O-bergaptol-5,7-bisdeoxycynanchoside (1), 3″,4″-dicinnamoyl-6-O-rhamnopyranosylpaulownioside (2), 2″,4″-dicinnamoyl-6-O-rhamnopyranosylcatalpol (3), 3″,4″-dicinnamoyl-6-O-rhamnopyranosylaucubin (4), and 3″,4″-dicinnamoyl-6-O-rhamnopyranosylcatalpol (5) using spectroscopic techniques. Among these compounds, compound 5 increased antioxidant response element (ARE) luciferase activity.


Subject(s)
Antioxidants/pharmacology , Biphenyl Compounds/metabolism , Iridoid Glycosides/pharmacology , Luciferases/metabolism , Picrates/metabolism , Plant Components, Aerial/chemistry , Scrophulariaceae/chemistry , Acylation , Antioxidants/chemistry , Antioxidants/isolation & purification , Cell Survival , Fatty Acids, Omega-3/chemistry , Hep G2 Cells , Humans , Iridoid Glycosides/chemistry , Iridoid Glycosides/isolation & purification , Molecular Conformation , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...