Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Healthc Inform Res ; 18(3): 157, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23115736
2.
Mol Cells ; 33(1): 43-51, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22134721

ABSTRACT

Rice stripe virus (RSV) is a viral disease that seriously impacts rice production in East Asia, most notably in Korea, China, and Japan. Highly RSV-resistant transgenic japonica rice plants were generated using a dsRNAi construct designed to silence the entire sequence region of the RSV-CP gene. Transgenic rice plants were inoculated with a population of viruliferous insects, small brown planthoppers (SBPH), and their resistance was evaluated using ELISA and an infection rate assay. A correlation between the expression of the RSV-CP homologous small RNAs and the RSV resistance of the transgenic rice lines was discovered. These plants were also analyzed by comparing the expression pattern of invading viral genes, small RNA production and the stable transmission of the RSV resistance trait to the T3 generation. Furthermore, the agronomic trait was stably transmitted to the T4 generation of transgenic plants.


Subject(s)
Capsid Proteins/genetics , Oryza/genetics , Plant Diseases/prevention & control , Tenuivirus/genetics , Viral Nonstructural Proteins/genetics , Gene Silencing , Genes, Viral , Genetic Predisposition to Disease , Plant Diseases/genetics , Plant Diseases/virology , Plants, Genetically Modified , RNA Interference , RNA, Plant/genetics , RNA, Small Interfering/genetics , Tenuivirus/metabolism
3.
Mol Cells ; 31(5): 437-45, 2011 May.
Article in English | MEDLINE | ID: mdl-21360198

ABSTRACT

Improved eating quality is a major breeding target in japonica rice due to market demand. In this study, we performed genetic analysis to identify quantitative trait loci (QTLs) that control rice eating quality traits using 192 recombinant inbred lines (RILs) derived from a cross between two japonica cultivars, 'Suweon365' and 'Chucheongbyeo'. We evaluated the stickiness (ST) and overall evaluation (OE) of cooked rice using a sensory test, the glossiness of cooked rice (GCR) using a Toyo-taste meter, and measured the amylose content (AC), protein content (PC), alkali digestion value (ADV), and days to heading (DH) of the RILs in the years 2006 and 2007. Our analysis revealed 21 QTLs on chromosomes 1, 4, 6, 7, 8, and 11. QTLs on chromosomes 6, 7, and 8 were detected for three traits related to eating quality in both years. QTLs for ST and OE were identified by a sensory test in the same region of the QTLs for AC, PC, ADV, GCR and DH on chromosome 8. QTL effects on the GCR were verified using QTL-NILs (near-isogenic lines) of BC(3)F(4-6) in the Suweon365 background, a low eating quality variety, and some BC(1)F(3) lines. Chucheongbyeo alleles at QTLs on chromosomes 7 and 8 increased the GCR in the NILs and backcrossed lines. The QTLs identified by our analysis will be applicable to future marker-assisted selection (MAS) strategies for improving the eating quality of japonica rice.


Subject(s)
Chromosomes, Plant , Genome, Plant , Oryza/genetics , Quantitative Trait Loci , Humans , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...