Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Circuits Syst ; 17(6): 1355-1370, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37478031

ABSTRACT

An energy-efficient power management interface (PMI) with adaptive high-voltage (HV) stimulation capability is presented for patch-type healthcare devices where power management and sensor readout circuits are integrated. For efficient power supply, it proposes a multimode buck converter with an adaptive mode controller, delivering 95.6% peak power conversion efficiency and over 90% efficiency across a wide 4-440 mA output current range. For energy-efficient stimulation, a HV stimulation system is designed to perform mode-adaptive on/off control, where the charge pump (CP) is adopted for periodic power saving. The CP output is adaptively tuned to minimize the stimulator's power waste by utilizing a bio-impedance path in the sensor circuit. The stimulation core supports multimode functionality of current-/voltage-controlled stimulations with monopolar and bipolar modes, providing ten kinds of various stimulation waveform shape. For efficient system operation, battery interface circuits are included to monitor state-of-charge (SOC) conditions, and a device power adjustment scheme is proposed to provide SOC-based maximum 28% power reduced optimal operation of high-resolution and low-power. The power-sensor integrated circuits were fabricated in a 0.18-µm CMOS process, and the proposed schemes were experimentally verified. For system-level feasibility, a patch-type device prototype was manufactured, and both power and bio-signal interfaces were functionally demonstrated.


Subject(s)
Electric Power Supplies , Equipment Design
2.
Sci Rep ; 11(1): 14598, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34272448

ABSTRACT

Electrostatic samplers have been increasingly studied for sampling of viral and bacterial aerosols, and bioaerosol samplers are required to provide concentrated liquid samples with high physical collection and biological recovery, which would be critical for rapid detection. Here, the effects of sampling media and protocols on the physical collection and biological recovery of two airborne bacteria (Pseudomonas fluorescens and Micrococcus luteus) under electrostatic field were investigated using a personal electrostatic particle concentrator (EPC). Deionized (DI) water with/without sodium dodecyl sulfate (SDS) and phosphate buffered saline were tested as sampling media. A polystyrene container was mounted onto the collection electrode of the EPC for stable storage and vortexing after capture. Many bacterial cells were found to be deposited on the bottom surface of the container submerged in the media via electrophoresis, and among the tested sampling protocols, wet sampling with a container and subsequent vortexing offered the most bacteria in the collection suspension. Experiments with several sampling media showed that 0.001-0.01% SDS-DI water demonstrated the highest recovery rate in the EPC. These findings would be valuable in the field of sampling and subsequent rapid detection of bioaerosols.

3.
Environ Sci Technol ; 54(17): 10700-10712, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32833440

ABSTRACT

Airborne influenza viruses are responsible for serious respiratory diseases, and most detection methods for airborne viruses are based on extraction of nucleic acids. Herein, vertical-flow-assay-based electrochemical paper immunosensors were fabricated to rapidly quantify the influenza H1N1 viruses in air after sampling with a portable electrostatic particle concentrator (EPC). The effects of antibodies, anti-influenza nucleoprotein antibodies (NP-Abs) and anti-influenza hemagglutinin antibodies (HA-Abs), on the paper sensors as well as nonpulsed high electrostatic fields with and without corona charging on the virus measurement were investigated. The antigenicity losses of the surface (HA) proteins were caused by H2O2 via lipid oxidation-derived radicals and 1O2 via direct protein peroxidation upon exposure of a high electrostatic field. However, minimal losses in antigenicity of NP of the influenza viruses were observed, and the concentration of the H1N1 viruses was more than 160 times higher in the EPC than the BioSampler upon using NP-Ab based paper sensors after 60 min collection. This NP-Ab-based paper sensors with the EPC provided measurements comparable to quantitative polymerase chain reaction (qPCR) but much quicker, specific to the influenza H1N1 viruses in the presence of other airborne microorganisms and beads, and more cost-effective than enzyme-linked immunosorbent assay and qPCR.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Enzyme-Linked Immunosorbent Assay , Humans , Hydrogen Peroxide , Static Electricity
4.
Opt Express ; 17(15): 12315-22, 2009 Jul 20.
Article in English | MEDLINE | ID: mdl-19654633

ABSTRACT

In this study, we present experimentally measured transmission enhancement of microwaves through periodic slit arrays in metallic films. Enhanced transmission peaks and sharp transmission dips are clearly observed around the theoretically expected surface plasmon polariton(SPP) resonance frequencies. Dependence of the transmittance spectra on the geometrical properties of slits is also demonstrated by varying the slit width, slit periodicity and the thickness of metallic films. Transmission peaks and dips are originated from the coupling between the incident light and SPPs which are caused by the slit array that acts like a grating coupler. The obtained results are theoretically explained by solving the Maxwell's equations and by the diffraction theory with appropriate boundary conditions, and they are in good agreement with those calculated by the finite-difference time-domain method.

SELECTION OF CITATIONS
SEARCH DETAIL
...