Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biofabrication ; 14(4)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36108605

ABSTRACT

Immunotherapy has revolutionized cancer treatment with the advent of advanced cell engineering techniques aimed at targeted therapy with reduced systemic toxicity. However, understanding the underlying immune-cancer interactions require development of advanced three-dimensional (3D) models of human tissues. In this study, we fabricated 3D tumor models with increasing complexity to study the cytotoxic responses of CD8+T cells, genetically engineered to express mucosal-associated invariant T (MAIT) cell receptors, towards MDA-MB-231 breast cancer cells. Homotypic MDA-MB-231 and heterotypic MDA-MB-231/human dermal fibroblast tumor spheroids were primed with precursor MAIT cell ligand 5-amino-6-D-ribitylaminouracil (5-ARU). Engineered T cells effectively eliminated tumors after a 3 d culture period, demonstrating that the engineered T cell receptor recognized major histocompatibility complex class I-related (MR1) protein expressing tumor cells in the presence of 5-ARU. Tumor cell killing efficiency of engineered T cells were also assessed by encapsulating these cells in fibrin, mimicking a tumor extracellular matrix microenvironment. Expression of proinflammatory cytokines such as interferon gamma, interleukin-13, CCL-3 indicated immune cell activation in all tumor models, post immunotherapy. Further, in corroborating the cytotoxic activity, we found that granzymes A and B were also upregulated, in homotypic as well as heterotypic tumors. Finally, a 3D bioprinted tumor model was employed to study the effect of localization of T cells with respect to tumors. T cells bioprinted proximal to the tumor had reduced invasion index and increased cytokine secretion, which indicated a paracrine mode of immune-cancer interaction. Development of 3D tumor-T cell platforms may enable studying the complex immune-cancer interactions and engineering MAIT cells for cell-based cancer immunotherapies.


Subject(s)
Breast Neoplasms , Mucosal-Associated Invariant T Cells , Breast Neoplasms/metabolism , Breast Neoplasms/therapy , Cytokines/metabolism , Female , Fibrin/metabolism , Granzymes/metabolism , Humans , Interferon-gamma/metabolism , Interleukin-13/metabolism , Ligands , Minor Histocompatibility Antigens/metabolism , Mucosal-Associated Invariant T Cells/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...