Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Genet Evol ; 62: 20-26, 2018 08.
Article in English | MEDLINE | ID: mdl-29665434

ABSTRACT

Leprosy (Hansen's Disease) has occurred throughout human history, and persists today at a low prevalence in most populations. Caused by Mycobacterium leprae, the infection primarily involves the skin, mucosa and peripheral nerves. The susceptible host range for Mycobacterium leprae is quite narrow. Besides humans, nine banded armadillos (Dasypus novemcinctus) and red squirrels (Sciurus vulgaris) are the only other natural hosts for M. leprae, but only armadillos recapitulate the disease as seen in humans. Armadillos across the Southern United States harbor a single predominant genotypic strain (SNP Type-3I) of M. leprae, which is also implicated in the zoonotic transmission of leprosy. We investigated, whether the zoonotic strain (3I) has any notable growth advantages in armadillos over another genetically distant strain-type (SNP Type-4P) of M. leprae, and if M. leprae strains manifest any notably different pathology among armadillos. We co-infected armadillos (n = 6) with 2 × 109 highly viable M. leprae of both strains and assessed the relative growth and dissemination of each strain in the animals. We also analyzed 12 additional armadillos, 6 each individually infected with the same quantity of either strain. The infections were allowed to fulminate and the clinical manifestations of the disease were noted. Animals were humanely sacrificed at the terminal stage of infection and the number of bacilli per gram of liver, spleen and lymph node tissue were enumerated by Q-PCR assay. The growth of M. leprae strain 4P was significantly higher (P < 0.05) than 3I when each strain was propagated individually in armadillos. Significantly (P < 0.0001) higher growth of the 4P strain also was confirmed among animals co-infected with both 3I and 4P strain types using whole genome sequencing. Interestingly, the zoonotic strain does not exhibit any growth advantage in these non-human hosts, but the varied proliferation of the two M. leprae strains within armadillos suggest there are notable pathological variations between M. leprae strain-types.


Subject(s)
Armadillos/microbiology , Genotype , Leprosy/veterinary , Mycobacterium leprae/growth & development , Mycobacterium leprae/genetics , Polymorphism, Single Nucleotide , Americas/epidemiology , Animals , Animals, Wild , Genetic Variation , Leprosy/epidemiology , Leprosy/microbiology , Mice , Mycobacterium leprae/classification , Zoonoses
2.
Am J Respir Cell Mol Biol ; 55(4): 586-601, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27253086

ABSTRACT

Cigarette smoke (CS) predisposes exposed individuals to respiratory infections not only by suppressing immune response but also by enhancing the virulence of pathogenic bacteria. As per our observations, in methicillin-resistant Staphylococcus aureus strain USA300, CS extract (CSE) potentiates biofilm formation via the down-regulation of quorum-sensing regulon accessory gene regulator. Because accessory gene regulator is a global regulator of the staphylococcal virulome, in the present study we sought to identify the effects of CS exposure on staphylococcal gene expression using RNAseq. Comparative analysis of RNAseq profiles revealed the up-regulation of important virulence genes encoding surface adhesins (fibronectin- and fibrinogen-binding proteins A and B and clumping factor B) and proteins involved in immune evasion, such as staphylocoagulase, staphylococcal protein A, and nuclease. In concurrence with the RNAseq data, we observed: (1) significant up-regulation of the ability of CSE-exposed USA300 to evade phagocytosis by macrophages and neutrophils, a known function of staphylococcal protein A; and (2) twofold higher (P < 0.001) number of CSE-exposed USA300 escaping neutrophil extracellular trap-mediated killing by neutrophils as a result of CS-mediated induction of nuclease. Importantly, in three different mouse strains, C57BL6/J, Balb/C, and A/J, we observed significantly higher pulmonary bacterial burden in animals infected with CSE-exposed USA300 as compared with medium-exposed control USA300. Taken together, these observations indicate that bioactive chemicals in CS induce hypervirulence by augmenting the ability of USA300 to evade bactericidal functions of leukocytes, such as phagocytosis and neutrophil extracellular trap-mediated killing.

3.
Genome Announc ; 3(6)2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26679579

ABSTRACT

Here, we report the draft genome sequences of Edwardsiella ictaluri strains LADL11-100 and LADL11-194, two isolates from natural outbreaks of edwardsiellosis in the zebrafish Danio rerio, as well as the sequences of the plasmids carried by the zebrafish strain of E. ictaluri.

4.
Biomed Res Int ; 2014: 348725, 2014.
Article in English | MEDLINE | ID: mdl-24995285

ABSTRACT

While most of computational annotation approaches are sequence-based, threading methods are becoming increasingly attractive because of predicted structural information that could uncover the underlying function. However, threading tools are generally compute-intensive and the number of protein sequences from even small genomes such as prokaryotes is large typically containing many thousands, prohibiting their application as a genome-wide structural systems biology tool. To leverage its utility, we have developed a pipeline for eThread--a meta-threading protein structure modeling tool, that can use computational resources efficiently and effectively. We employ a pilot-based approach that supports seamless data and task-level parallelism and manages large variation in workload and computational requirements. Our scalable pipeline is deployed on Amazon EC2 and can efficiently select resources based upon task requirements. We present runtime analysis to characterize computational complexity of eThread and EC2 infrastructure. Based on results, we suggest a pathway to an optimized solution with respect to metrics such as time-to-solution or cost-to-solution. Our eThread pipeline can scale to support a large number of sequences and is expected to be a viable solution for genome-scale structural bioinformatics and structure-based annotation, particularly, amenable for small genomes such as prokaryotes. The developed pipeline is easily extensible to other types of distributed cyberinfrastructure.


Subject(s)
Computational Biology/methods , Protein Conformation , Proteins/chemistry , Software , Algorithms , Amino Acid Sequence , Genome , Internet , Molecular Sequence Annotation , User-Computer Interface
5.
J Chem Phys ; 127(22): 224701, 2007 Dec 14.
Article in English | MEDLINE | ID: mdl-18081408

ABSTRACT

Nanoporous layered double hydroxide (LDH) materials have wide applications, ranging from being good adsorbents for gases (particularly CO(2)) and liquid ions to membranes and catalysts. They also have applications in medicine, environmental remediation, and electrochemistry. Their general chemical composition is [M(1-x)(II)M(x)(III)(OH(-))(2)](x+)[X(nm)(m-)nH(2)O], where M represents a metallic cation (of valence II or III), and X(nm)(m-) is an m-valence inorganic, or heteropolyacid, or organic anion. We study diffusion and adsorption of CO(2) in a particular LDH with M(II)=Mg, M(III)=Al, and x approximately = 0.71, using an atomistic model developed based on energy minimization and molecular dynamics simulations, together with a modified form of the consistent-valence force field. The adsorption isotherms and self-diffusivity of CO(2) in the material are computed over a range of temperature, using molecular simulations. The computed diffusivities are within one order of magnitude of the measured ones at lower temperatures, while agreeing well with the data at high temperatures. The measured and computed adsorption isotherms agree at low loadings, but differ by about 25% at high loadings. Possible reasons for the differences between the computed properties and the experimental data are discussed, and a model for improving the accuracy of the computed properties is suggested. Also studied are the material's hydration and swelling properties. As water molecules are added to the pore space, the LDH material swells to some extent, with the hydration energy exhibiting interesting variations with the number of the water molecules added. The implications of the results are discussed.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(1 Pt 1): 011810, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17677487

ABSTRACT

Extensive molecular dynamics (MD) simulations were carried out to compute the solubilities and self-diffusivities of CO2 and CH4 in amorphous polyetherimide (PEI) and mixed-matrix PEI generated by inserting single-walled carbon nanotubes into the polymer. Atomistic models of PEI and its composites were generated using energy minimizations, MD simulations, and the polymer-consistent force field. Two types of polymer composite were generated by inserting (7,0) and (12,0) zigzag carbon nanotubes into the PEI structure. The morphologies of PEI and its composites were characterized by their densities, radial distribution functions, and the accessible free volumes, which were computed with probe molecules of different sizes. The distributions of the cavity volumes were computed using the Voronoi tessellation method. The computed self-diffusivities of the gases in the polymer composites are much larger than those in pure PEI. We find, however, that the increase is not due to diffusion of the gases through the nanotubes which have smooth energy surfaces and, therefore, provide fast transport paths. Instead, the MD simulations indicate a squeezing effect of the nanotubes on the polymer matrix that changes the composite polymers' free-volume distributions and makes them more sharply peaked. The presence of nanotubes also creates several cavities with large volumes that give rise to larger diffusivities in the polymer composites. This effect is due to the repulsive interactions between the polymer and the nanotubes. The solubilities of the gases in the polymer composites are also larger than those in pure PEI, hence indicating larger gas permeabilities for mixed-matrix PEI than PEI itself.

7.
J Chem Phys ; 122(21): 214713, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15974768

ABSTRACT

An atomistic model of layered double hydroxides, an important class of nanoporous materials, is presented. These materials have wide applications, ranging from adsorbents for gases and liquid ions to nanoporous membranes and catalysts. They consist of two types of metallic cations that are accommodated by a close-packed configuration of OH- and other anions in a positively charged brucitelike layer. Water and various anions are distributed in the interlayer space for charge compensation. A modified form of the consistent-valence force field, together with energy minimization and molecular dynamics simulations, is utilized for developing an atomistic model of the materials. To test the accuracy of the model, we compare the vibrational frequencies, x-ray diffraction patterns, and the basal spacing of the material, computed using the atomistic model, with our experimental data over a wide range of temperature. Good agreement is found between the computed and measured quantities.

SELECTION OF CITATIONS
SEARCH DETAIL
...