Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 637
Filter
1.
Chempluschem ; : e202400327, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012805

ABSTRACT

CO2 conversion via hydrogenation on iron-based catalysts on non-carbon supports produces mainly CO or methane by the Sabatier reaction, while the formation of C2+ hydrocarbons is of greatest interest. CxHy production from CO2 may be considered as a two-step process with the initial formation of carbon monoxide by the reverse water gas shift reaction followed by the Fischer-Tropsch synthesis (FTS). In the present work CO2 hydrogenation over iron-based catalysts (Fe, FeCr, FeK) deposited on a carbon carrier has been studied. The catalyst structure has been investigated by XRD, TEM, XPS, Mössbauer spectroscopy and in situ magnetometry. Spinel-type oxide phases (magnetite Fe3O4; maggemite γ-Fe2O3, and, in the case of FeCr/C catalyst, iron chromite Fe1+xCr2-xO4) are formed on the catalysts, and they contribute exclusively to the CO production. Iron carbides, active in FTS, are formed on Fe- and FeK-catalysts during pre-activation in reducing environment and then during the reaction. The reaction over the 20Fe1K/C catalyst in supercritical high-density CO2/H2 substrate (400°C, 8.5 MPa) leads to 72% selectivity for C1-C12+ hydrocarbons (alkanes and alkenes). Under the same conditions, iron carbides do not form on the FeCr/C catalysts, and CO2 hydrogenation results in the CO formation with the selectivity of 90-100%.

2.
J Med Food ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023772

ABSTRACT

This study investigated the antiobesity effects of black ginger extract (BGE) in high-fat diet (HFD)-induced obese mice. Mice were divided into six groups: normal diet control (NC, AIN-93G normal diet), 60% HFD control (HFD), HFD containing metformin at 250 mg/kg b.w. (Met, positive control), and HFD containing BGE at 5, 10, or 20 mg/kg b.w. for 15 weeks. BGE administration significantly prevented HFD-induced increases in weight gain, organ weight, and adipose tissue mass. Furthermore, it resulted in decreased adipogenesis and lipogenesis-related factors, including phosphorylated mitogen-activated protein kinase, peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding proteins, sterol regulatory element-binding protein 1, phosphorylated cAMP response element-binding protein, glucose-6-phosphate dehydrogenase, fatty acid synthase, dephosphorylated ATP-citrate lyase, dephosphorylated acetyl-CoA carboxylase, and lipoprotein lipase, in white adipose tissues. Moreover, BGE administration enhanced lipolysis in white adipose tissue, as evidenced by elevated levels of adipose triglyceride lipase, phosphorylated hormone-sensitive lipase, and protein kinase A, along with reduced levels of perilipin and phosphodiesterase 3B. BGE induced thermogenesis in brown adipose tissues, as reflected by the increased expression of AMP-activated protein kinase, uncoupling protein 1, and carnitine palmitoyltransferase 1 and decreased levels of fatty acid-binding protein 4. In conclusion, this study provides comprehensive evidence supporting the antiobesity effects of BGE, elucidating the underlying molecular mechanisms involved in preventing weight gain, suppressing adipogenesis, promoting lipolysis, and stimulating thermogenesis. These findings suggest the potential therapeutic utility of BGE in combating obesity and associated metabolic disorders (KHGASP-2023-034).

3.
Appl Environ Microbiol ; : e0095724, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888336

ABSTRACT

Escherichia coli uses allantoin as the sole nitrogen source during anaerobic growth. In the final step of allantoin degradation, oxamic transcarbamylase (OXTCase) converts oxalurate to carbamoyl phosphate (CP) and oxamate. The activity of this enzyme was first measured in Streptococcus allantoicus in the 1960s, but no OXTCase enzyme or the encoding gene(s) have been found in any strain. This study discovered that allFGH (fdrA, ylbE, and ylbF) are the genes that encode the global orphan enzyme OXTCase. The three genes form an operon together with allK (ybcF), encoding catabolic carbamate kinase. The allFGHK operon is located directly downstream of the allECD operon that encodes enzymes for the preceding steps of OXTCase. The OXTCase kinetic parameters were analyzed using the purified protein composed of AllF-AllG-AllH (FdrA-YlbE-YlbF); for the substrate CP, KM and Vmax were 1.3 mM and 15.4 U/mg OXTCase, respectively, and for the substrate oxamate, they were 36.9 mM and 27.0 U/mg OXTCase. In addition, the OXTCase encoded by the three genes is a novel transcarbamylase that shows no similarity with known enzymes of the transcarbamylase family such as aspartate transcarbamylase, ornithine transcarbamylase, and YgeW transcarbamylase. The present study elucidated the anaerobic allantoin degradation pathway of E. coli. Therefore, we suggest that the genes fdrA, ylbE, and ylbF are renamed allF, allG, and allH, respectively.IMPORTANCEThe anaerobic allantoin degradation pathway of Escherichia coli includes a global orphan enzyme, oxamic transcarbamylase (OXTCase), which converts oxalurate to carbamoyl phosphate and oxamate. This study found that the allFGH (fdrA, ylbE, and ylbF) genes encode OXTCase. The OXTCase activity and kinetics were successfully determined with purified recombinant AllF-AllG-AllH (FdrA-YlbE-YlbF). This OXTCase is a novel transcarbamylase that shows no similarity with known enzymes of the transcarbamylase family such as aspartate transcarbamylase (ATCase), ornithine transcarbamylase (OTCase), and YgeW transcarbamylase (YTCase). In addition, OXTCase activity requires three genes, whereas ATCase is encoded by two genes, and OTCase and YTCase are encoded by a single gene. The current study discovered OXTCase, the last unknown step in allantoin degradation, and this enzyme is a new member of the transcarbamylase group that was previously unknown.

4.
Biochem Biophys Res Commun ; 721: 150129, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38762933

ABSTRACT

Melanoma, the deadliest skin cancer, originates from epidermal melanocytes. The influence of preadipocytes on melanoma is less understood. We co-cultured mouse melanoma B16 cells with 3T3L1 preadipocytes to form mixed spheroids and observed increased melanoma proliferation and growth compared to B16-only spheroids. Metastasis-related proteins YAP, TAZ, and PD-L1 levels were also higher in mixed spheroids. Treatment with exosome inhibitor GW4869 halted melanoma growth and reduced expression of these proteins, suggesting exosomal crosstalk between B16 and 3T3L1 cells. MiR-155 expression was significantly higher in mixed spheroids, and GW4869 reduced its levels. Additionally, co-culturing with Raw264.7 macrophage cells increased M2 markers IL-4 and CD206 in Raw264.7 cells, effects that were diminished by GW4869. These results indicate that preadipocytes may enhance melanoma progression and metastasis via exosomal interactions.


Subject(s)
Adipocytes , Exosomes , Macrophages , Melanoma, Experimental , Tumor Microenvironment , Animals , Mice , Macrophages/metabolism , Macrophages/pathology , Macrophages/drug effects , Adipocytes/metabolism , Adipocytes/pathology , Adipocytes/drug effects , Melanoma, Experimental/pathology , Melanoma, Experimental/metabolism , RAW 264.7 Cells , Exosomes/metabolism , Coculture Techniques , Disease Progression , 3T3-L1 Cells , Benzylidene Compounds/pharmacology , Aniline Compounds/pharmacology , Cell Proliferation/drug effects , Melanoma/pathology , Melanoma/metabolism , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Cell Line, Tumor , MicroRNAs/metabolism , MicroRNAs/genetics
5.
J Med Food ; 27(6): 488-501, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579153

ABSTRACT

This study investigated the protective effects of a complex of Indian gooseberry and barley sprout (IB complex) on oxidative stress and skin damage caused by ultraviolet B irradiation in SHK-I hairless mice. The study examined the impact of IB complex on skin hydration, wrinkle formation, and melanogenesis using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and western blot analysis. The IB complex reduced skin hydration loss and wrinkle formation, while also demonstrating enhanced antioxidant activities. The IB complex maintained skin hydration via upregulation of hyaluronic acid and ceramide synthesis, including the regulation of hyaluronic acid synthase, long-chain ceramide formation, dihydroceramide desaturase 1 activity, and type I collagen production. The IB complex prevented wrinkle formation via downregulating JNK and upregulating TGF-ß pathways. Moreover, IB complex blocked melanin production via inhibition of protein kinase A, cAMP response element-binding protein, and microphthalmia-associated transcription factor pathways. These results suggest that IB complex is a potential agent to protect the skin against photodamage caused by exposure to UVB radiation. The research protocols underwent approval from the Institutional Animal Care and Use Committee of Kyung Hee University (KHGASP-21-577), ensuring compliance with ethical standards.


Subject(s)
Hordeum , Mice, Hairless , Oxidative Stress , Plant Extracts , Skin Aging , Skin , Ultraviolet Rays , Animals , Ultraviolet Rays/adverse effects , Oxidative Stress/radiation effects , Oxidative Stress/drug effects , Skin Aging/radiation effects , Skin Aging/drug effects , Mice , Hordeum/chemistry , Skin/radiation effects , Skin/metabolism , Plant Extracts/pharmacology , Humans , Male , Antioxidants , Melanins/metabolism
6.
J Med Food ; 27(7): 661-668, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38603571

ABSTRACT

We investigated the effects of Lactuca sativa L. extracts (Lactuc) on pentobarbital-induced sleep in mice to elucidate the mechanisms underlying its impact on sleep quality. Mice were randomly assigned to five groups: control, positive control (diazepam 2 mg/kg b.w.), and three groups orally administered with Lactuc (50, 100, and 200 mg/kg b.w.). After 2 weeks of oral administration and intraperitoneal injections, the mice were killed. We found that the Lactuc-administered groups had significantly reduced sleep latency and increased sleep duration compared with the control group. Furthermore, the oral administration of Lactuc induced a significant increase in mRNA expression and protein expression of adenosine A1 receptor in the brains compared with the expressions in the control group. In addition, the Lactuc-administered groups exhibited significantly higher levels of mRNA expressions of GABAA receptors subunits α2, ß2, γ1, and, γ2 in the brain tissue. Therefore, we suggest that Lactuc could be used to develop natural products that effectively improve sleep quality and duration.


Subject(s)
Lactuca , Pentobarbital , Plant Extracts , Receptor, Adenosine A1 , Receptors, GABA-A , Sleep , Up-Regulation , Animals , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Pentobarbital/pharmacology , Mice , Receptors, GABA-A/metabolism , Receptors, GABA-A/genetics , Sleep/drug effects , Male , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A1/genetics , Up-Regulation/drug effects , Lactuca/chemistry , Lactuca/metabolism , Brain/metabolism , Brain/drug effects , Humans , Mice, Inbred ICR , Sleep Duration
7.
Plant Dis ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640430

ABSTRACT

Lycium chinense Mill is a deciduous broad-leaved shrub belonging to the Solanaceae family and, is widely distributed throughout Korea. This plant is native to, or cultivated for various oriental medicinal purposes in, multiple regions of Asia, including Korea, China, and Japan (Lee 1982; Kim et al. 1994). Eleven Puccinia species have been reported to infect Lycium species (Otálora et al. 2018). In May and October 2022, symptoms of rust disease caused by Puccinia sp. were observed on almost all the leaves of about 60 sprawling stems of L. chinense plants on the seashore of Jeju island, Korea (33°14'15.0835″N, 126°30'53.40E). Brownish red (uredinium) or blackish brown (telium) pustules were observed on upper and lower surfaces of infected leaves. These symptoms were observed on about 40 L. chinense plants, barely growing between rocks on the seashore of Ulsan Metropolitan City, and on the about 20 L. chinense plants on a small home garden of Jindo-gun, Korea, in June and October 2023, respectively. Uredinia were amphigenous, individually scattered, but sometimes formed groups of two or three on leaves and sepals, ferruginous, pulverulent, and surrounded by a ruptured epidermis, often developing into blackish telia. Urediniospores were either ellipsoid or ovoid, approximately 29.3-34.9 × 17-24.3 µm, with yellowish walls, 1-2 µm thick. The germ pores were bizonate, and each band contained four pores covered by low papillae. Blackish-brown telia were observed on both leaf surfaces. Teliospores were broadly ellipsoidal, and rounded at the apex and towards the base. They were measured approximately 37.1-53.4 × 25-34.5 µm. The walls were light chestnut-brown and 2-3.7 µm thick, apically up to 5-9 µm thick. The swollen pedicel was persistent, basal, hyaline, smooth, and similar in length to the spores (Fig. 1). These morphological characteristics were similar to those of P. tumidipes, as described by Otálora et al. (2018). The representative specimens were preserved at the Animal and Plant Quarantine Agency Herbarium (PQK220531, -230605, and -231026). The fungal internal transcribed spacer (ITS2) and cytochrome oxidase subunit 3(CO3) regions were amplified from the total DNA of the isolates, using the primer pairs ITS5, ITS4, CO3F1, and CO3R1 for phylogenetic analysis (White et al. 1990; Vialle et al. 2009). PCR products were sequenced (Celemics, Seoul, Korea), and deposited in GenBank (Accession numbers are shown in Fig. 2.). The combined ITS2 and CO3 sequences were grouped with those of other isolates of P. tumidipes in the phylogenetic tree (Fig. 2). In November 2022, three pathogenicity tests were conducted using a urediniospore suspension made with the PQK220531 isolate in sterile distilled water. The suspension was smeared onto the upper surface of healthy L. chinense leaves. The three inoculated plants were kept in the dark at saturated moisture levels for 24 hours and placed in an isolated glasshouse together with the three control plants. After two weeks, uredinia of P. tumidipes were observed on the leaves of the inoculated plants, but not on the control plants. Although no spermogonial or aecial stage has been observed in Korea, our study has proven that P. tumidipes is the causal fungus of rust disease in L. chinense. This result is also the first discovery of the New-World P. tumidipes in Asia, showing this fungus is not limitedly distributed in America and suggesting further surveys be done on its exact geographical distribution.

9.
Plant Dis ; 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38616387

ABSTRACT

Puccinia xanthii Schw. is a microcyclic rust fungus, first found on Xanthium strumarium Lour in North Carolina, the United States. This rust fungus is native to the continental United States, Hawaii, Mexico, and the West Indies (Arthur 1934). It has become notoriously invasive and is now distributed in the Europe (Bulgaria, France, Hungary, Italy, Romania, Spain, and the former Yugoslavia), India, Indonesia, Australia, and South Africa (Parmelee 1969; Alcorn 1976; Wahyuno 2012). In East Asia, the fungus has been reported in Japan (Hiratsuka et al. 1992) and China (Zhao et al. 2014) but not in Korea. It has been reported mainly on the invasive weeds Xanthium and Ambrosia species. In addition, it rarely occurs on sunflowers (Helianthus spp.) in Australia (Alcorn 1976), South Africa (Pretorius et al. 2000), and North America (Gulya and Charlet 2002). In Korea, rust disease symptoms caused by a Puccinia fungus were first found on X. orientale L. at the roadside of Okcheon-gun, Chungcheongbuk-do (36 27'95.428"N 127 66'26.378"E) in October 2021 and were repeatedly observed in the same site in 2022. The similar symptom was additionally found on X. orientale in Yesan-gun, Oct. 2022. The symptoms were brown spots on round chlorotic haloes on the adaxial leaf surface and dark brown pustules on the abaxial leaf surface. Telia were brown to dark brown, round, mostly grouped, 0.28-0.61 mm in diameter, and mainly formed on the abaxial leaf surface but sometimes on the adaxial leaf surface. Teliospores were two-celled, pedicellate, and measured 37.6-110 × 12.4-21.5 µm in size; the wall was yellowish or almost colorless, smooth, 1.2-2.6 µm thick at the sides, and up to 7.4 µm thick at the apex. The morphological characteristics of the teliospores were identical to those of P. xanthii described by Arthur (1934) and Parmelee (1969). Based on phylogenetic analyses (e-Xtra 2) of the internal transcribed spacer (ITS) and partial large subunit (LSU) rDNA extracted from the teliospores, they were identified as P. xanthii. BLAST analysis showed that the sequences had high homologies (over 99.82%) with the reference strains of P. xanthii (EF635903 and KX999896). The representative specimens were preserved at the Animal and Plant Quarantine Agency Herbarium (PQK211005 for Okcheon-gun isolate and PQK220913 for Yesan-gun) and the sequences were deposited in GenBank (OR958716 and OR958692). A pathogenicity test was performed by dropping a suspension of germinating teliospores and basidiospores onto the adaxial leaf surfaces of apparently healthy X. orientale plants in Oct. 2022, using the isolate PQK220913 (OR958692). The three inoculated plants were placed together with three controls treated with only distilled water, in the dark at saturated humidity for 24 hours in an isolated greenhouse. After two weeks, typical rust symptoms were observed in the three infected plants, whereas no symptoms appeared in the control plants (e-Xtra 1). The causal fungus was identified as P. xanthii based on host relationships, successful experimental inoculation, morphological characteristics, and sequence similarity of partial DNA fragments. To our knowledge, this is the first report of P. xanthii on X. orientale in Korea. P. xanthii was additionally confirmed on X. orientale in Gumi-si, Boeun-gun, Seongju-gun, Naju-si, and Gunsan-si in 2023, indicating its wide distribution in Korea. It is expected that P. xanthii could be a candidate as a biological agent for controlling the invasive weed, X. orientale.

10.
World J Gastrointest Surg ; 16(3): 882-892, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38577094

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract, with tumor necrosis factor (TNF)-α playing a key role in its pathogenesis. Etanercept, a decoy receptor for TNF, is used to treat inflammatory conditions. The secretome derived from adipose-derived stem cells (ASCs) has anti-inflammatory effects, making it a promising therapeutic option for IBD. AIM: To investigate the anti-inflammatory effects of the secretome obtained from ASCs synthesizing etanercept on colon cells and in a dextran sulfate sodium (DSS)-induced IBD mouse model. METHODS: ASCs were transfected with etanercept-encoding mini-circle plasmids to create etanercept-producing cells. The secretory material from these cells was then tested for anti-inflammatory effects both in vitro and in a DSS-induced IBD mouse model. RESULTS: This study revealed promising results indicating that the group treated with the secretome derived from etanercept-synthesizing ASCs [Etanercept-Secretome (Et-Sec) group] had significantly lower expression levels of inflammatory mediators, such as interleukin-6, Monocyte Chemoattractant Protein-1, and TNF-α, when compared to the control secretome (Ct-Sec). Moreover, the Et-Sec group exhibited a marked therapeutic effect in terms of preserving the architecture of intestinal tissue compared to the Ct-Sec. CONCLUSION: These results suggest that the secretome derived from ASCs that synthesize etanercept has potential as a therapeutic agent for the treatment of IBD, potentially enhancing treatment efficacy by merging the anti-inflammatory qualities of the ASC secretome with etanercept's targeted approach to better address the multifaceted pathophysiology of IBD.

11.
Food Nutr Res ; 682024.
Article in English | MEDLINE | ID: mdl-38571921

ABSTRACT

Background: Obesity is characterized by an imbalance between energy intake and expenditure, leading to the excessive accumulation of triglycerides in adipose tissue. Objective: This study investigated the potential of Oxylia to prevent obesity in mice fed with a high-fat diet (HFD). Design: C57BL/6J mice were fed with one of the following five diets - AIN93G normal diet (normal control), 60% (HFD; control), HFD containing metformin at 40 mg/kg body weight (b.w.) (Met; positive control), HFD containing Oxylia at 30 mg/kg b.w. (O30), or HFD containing Oxylia at 60 mg/kg b.w. (O60) - for 15 weeks. Results: Mice under an HFD supplemented with Oxylia had decreased body weight gain, adipose tissue weight, and adipose tissue mass. In addition, triglyceride (TG), total cholesterol, and VLDL/LDL cholesterol levels were lower in the O60 groups than in the HFD-fed control group. Moreover, Oxylia supplementation decreased the expression of adipogenesis-related mRNAs and lipogenesis-related proteins while increasing the expression of lipolysis-related proteins in white adipose tissue and thermogenesis-related proteins in brown adipose tissue. Conclusions: These findings suggest that Oxylia has potential as a functional food ingredient for the prevention and treatment of obesity and related metabolic disorders.

12.
Food Nutr Res ; 682024.
Article in English | MEDLINE | ID: mdl-38571919

ABSTRACT

Background: Osteoarthritis (OA), the most prevalent form of arthritis, is a degenerative joint disease marked by the progressive deterioration of articular cartilage, leading to clinical manifestations such as joint pain. Objective: This study investigated the effects of Curcuma longa L. extract (CL) containing curcumin, demethoxycurcumin, and bisdemethoxycurcumin on monosodium iodoacetate (MIA)-induced OA rats. Design: Sprague-Dawley rats with MIA-induced OA received CL supplementation at doses of 5, 25, and 40 mg/kg body weight. Results: CL extract administration suppressed mineralisation parameters and morphological modifications and decreased arachidonate5-lipoxygenase and leukotriene B4 levels in articular cartilage. Additionally, it decreased serum prostaglandin E2, NO, and glycosaminoglycanlevels as well as the protein expression of phosphorylated inhibitor kappa B-alpha, phosphorylated p65, cyclooxygenase-2, and inducible nitric oxide synthase in the cartilage of MIA-injected rats. Furthermore, it also reduced matrix metalloproteinases and elevated SMAD family member 3 phosphorylation, tissue inhibitor of metalloproteinases, aggrecan, collagen type I, and collagen type II levels in the articular cartilage of MIA-induced OA rats. Conclusions: This study's findings suggest that CL supplementation helps prevent OA development and is an effective therapy for OA.

13.
Ann Surg Treat Res ; 106(3): 155-168, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38435492

ABSTRACT

Purpose: Liver fibrosis is a critical health issue with limited treatment options. This study investigates the potential of PGC-Sec, a secretome derived from peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)-overexpressing adipose-derived stem cells (ASCs), as a novel therapeutic strategy for liver fibrosis. Methods: Upon achieving a cellular confluence of 70%-80%, ASCs were transfected with pcDNA-PGC-1α. PGC-Sec, obtained through concentration of conditioned media using ultrafiltration units with a 3-kDa cutoff, was assessed through in vitro assays and in vitro mouse models. Results: In vitro, PGC-Sec significantly reduced LX2 human hepatic stellate cell proliferation and mitigated mitochondrial oxidative stress compared to the control-secretome. In an in vivo mouse model, PGC-Sec treatment led to notable reductions in hepatic enzyme activity, serum proinflammatory cytokine concentrations, and fibrosis-related marker expression. Histological analysis demonstrated improved liver histology and reduced fibrosis severity in PGC-Sec-treated mice. Immunohistochemical staining confirmed enhanced expression of PGC-1α, optic atrophy 1 (a mitochondrial function marker), and peroxisome proliferator-activated receptor alpha (an antifibrogenic marker) in the PGC-Sec-treated group, along with reduced collagen type 1A expression (a profibrogenic marker). Conclusion: These findings highlight the therapeutic potential of PGC-Sec in combating liver fibrosis by enhancing mitochondrial biogenesis and function, and promoting antifibrotic processes. PGC-Sec holds promise as a novel treatment strategy for liver fibrosis.

14.
Int J Mol Sci ; 25(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542268

ABSTRACT

Recently, artificial exosomes have been developed to overcome the challenges of natural exosomes, such as production scalability and stability. In the production of artificial exosomes, the incorporation of membrane proteins into lipid nanostructures is emerging as a notable approach for enhancing biocompatibility and treatment efficacy. This study focuses on incorporating HEK293T cell-derived membrane proteins into liposomes to create membrane-protein-bound liposomes (MPLCs), with the goal of improving their effectiveness as anticancer therapeutics. MPLCs were generated by combining two key elements: lipid components that are identical to those in conventional liposomes (CLs) and membrane protein components uniquely derived from HEK293T cells. An extensive comparison of CLs and MPLCs was conducted across multiple in vitro and in vivo cancer models, employing advanced techniques such as cryo-TEM (tramsmission electron microscopy) imaging and FT-IR (fourier transform infrared spectroscopy). MPLCs displayed superior membrane fusion capabilities in cancer cell lines, with significantly higher cellular uptake. Additionally, MPLCs maintained their morphology and size better than CLs when exposed to FBS (fetal bovine serum), suggesting enhanced serum stability. In a xenograft mouse model using HeLa and ASPC cancer cells, intravenous administration of MPLCs MPLCs accumulated more in tumor tissues, highlighting their potential for targeted cancer therapy. Overall, these results indicate that MPLCs have superior tumor-targeting properties, possibly attributable to their membrane protein composition, offering promising prospects for enhancing drug delivery efficiency in cancer treatments. This research could offer new clinical application opportunities, as it uses MPLCs with membrane proteins from HEK293T cells, which are known for their efficient production and compatibility with GMP (good manufacturing practice) standards.


Subject(s)
Liposomes , Nanostructures , Humans , Mice , Animals , Liposomes/chemistry , HEK293 Cells , Spectroscopy, Fourier Transform Infrared , Membrane Proteins , Lipids/chemistry
15.
J Psychiatr Res ; 172: 59-65, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364553

ABSTRACT

OBJECTIVE: Symptoms of depression in adolescents are widely variable, but they are often interactive and clustered. The analysis of interactions and clusters among individual symptoms may help predict treatment outcomes. We aimed to determine clusters of individual symptoms in adolescent depression and their changes in the response to pharmacological treatment. METHOD: A total of 95 adolescents, aged 12-17 years, with major depressive disorder were included. Participants were treated with escitalopram, and depressive symptoms were assessed at baseline (V1) and 1, 2, 4, 6, and 8 weeks (V6). The severity of depression was assessed using the Children's Depression Rating Scale-Revised. To construct network and clustering structures among symptoms, the Gaussian graphical model and Exploratory Graph Analysis with the tuning parameter to minimize the extended Bayesian information criterion were adopted. RESULTS: Exploratory Graph Analysis revealed that symptoms of depression comprised four clusters: impaired activity, somatic concerns, subjective mood, and observed affect. The main effect of visit with decreased symptom severity was significant in all four clusters; however, the degree of symptom improvement differed among the four clusters. The effect size of score differences from V1 to V6 was the highest in the subjective mood (Cohen's d = 1.075), and lowest in impaired activity (d = 0.501) clusters. CONCLUSION: The present study identified four symptom clusters associated with adolescent depression and their differential changes related to antidepressant treatment. This finding suggests that escitalopram was the most effective at improving subjective mood among different clusters. However, other therapeutic modalities may be needed to improve other clusters of symptoms, consequently leading to increased overall improvement of depression in adolescents.


Subject(s)
Depressive Disorder, Major , Child , Humans , Adolescent , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/diagnosis , Depression/drug therapy , Escitalopram , Syndrome , Bayes Theorem , Treatment Outcome
16.
Diabetes Metab J ; 48(1): 112-121, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38173371

ABSTRACT

BACKGRUOUND: Type 2 diabetes mellitus (T2DM) induces endothelial dysfunction and inflammation, which are the main factors for atherosclerosis and cardiovascular disease. The present study aimed to compare the effects of rosuvastatin monotherapy and rosuvastatin/ezetimibe combination therapy on lipid profile, insulin sensitivity, and vascular inflammatory response in patients with T2DM. METHODS: A total of 101 patients with T2DM and dyslipidemia were randomized to either rosuvastatin monotherapy (5 mg/day, n=47) or rosuvastatin/ezetimibe combination therapy (5 mg/10 mg/day, n=45) and treated for 12 weeks. Serum lipids, glucose, insulin, soluble intercellular adhesion molecule-1 (sICAM-1), and peroxiredoxin 4 (PRDX4) levels were determined before and after 12 weeks of treatment. RESULTS: The reduction in low density lipoprotein cholesterol (LDL-C) by more than 50% from baseline after treatment was more in the combination therapy group. The serum sICAM-1 levels increased significantly in both groups, but there was no difference between the two groups. The significant changes in homeostasis model assessment of insulin resistance (HOMA-IR) and PRDX4 were confirmed only in the subgroup in which LDL-C was reduced by 50% or more in the combination therapy group. However, after adjusting for diabetes mellitus duration and hypertension, the changes in HOMA-IR and PRDX4 were not significant between the two groups. CONCLUSION: Although rosuvastatin/ezetimibe combination therapy had a greater LDL-C reduction effect than rosuvastatin monotherapy, it had no additional effects on insulin sensitivity and vascular inflammatory response. Further studies are needed on the effect of long-term treatment with ezetimibe on insulin sensitivity and vascular inflammatory response.


Subject(s)
Anticholesteremic Agents , Diabetes Mellitus, Type 2 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Insulin Resistance , Humans , Anticholesteremic Agents/therapeutic use , Cholesterol, LDL , Diabetes Mellitus, Type 2/drug therapy , Drug Therapy, Combination , Ezetimibe/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Rosuvastatin Calcium/therapeutic use , Treatment Outcome
17.
Photochem Photobiol ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38214077

ABSTRACT

Prolonged endoplasmic reticulum (ER) stress contributes to cell apoptosis and interferes with bone homeostasis. Although photobiomodulation (PBM) might be used for ER stress-induced diseases, the role of PBM in relieving cell apoptosis remains unknown. During ER stress, glycogen synthase kinase-3ß (GSK-3ß) is critical; however, its functions in PBM remain uncertain. Thus, this study aimed to investigate the role of GSK-3ß in 625 nm light-emitting diode irradiation (LEDI) relieving tunicamycin (TM)-induced apoptosis. Based on the results, pre-625 nm LEDI (Pre-IR) phosphorylated GSK-3ß via ROS production. Compared with the TM group, Pre-IR + TM group reduced the phosphorylation of the α-subunit of eukaryotic translation initiation factor 2 (eIF-2α) and B-cell lymphoma protein 2 (Bcl-2)-associated X (Bax)/Bcl-2 ratio through regulating GSK-3ß. Furthermore, a similar tendency was observed between Pre-IR + TM and Pre-LiCl+TM groups in preventing TM-induced early and late apoptosis. In summary, this study suggests that the Pre-IR treatment in TM-induced ER stress is beneficial for preventing cell apoptosis via GSK-3ß phosphorylation.

18.
Mar Drugs ; 21(12)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38132929

ABSTRACT

The objective of this study was to investigate the effect of low-molecular-weight fish collagen (valine-glycine-proline-hydroxyproline-glycine-proline-alanine-glycine; LMWCP) on H2O2- or LPS-treated primary chondrocytes and monoiodoacetate (MIA)-induced osteoarthritis rat models. Our findings indicated that LMWCP treatment exhibited protective effects by preventing chondrocyte death and reducing matrix degradation in both H2O2-treated primary chondrocytes and cartilage tissue from MIA-induced osteoarthritis rats. This was achieved by increasing the levels of aggrecan, collagen type I, collagen type II, TIMP-1, and TIMP-3, while simultaneously decreasing catabolic factors such as phosphorylation of Smad, MMP-3, and MMP-13. Additionally, LMWCP treatment effectively suppressed the activation of inflammation and apoptosis pathways in both LPS-treated primary chondrocytes and cartilage tissue from MIA-induced osteoarthritis rats. These results suggest that LMWCP supplementation ameliorates the progression of osteoarthritis through its direct impact on inflammation and apoptosis in chondrocytes.


Subject(s)
Cartilage, Articular , Osteoarthritis , Rats , Animals , Chondrocytes , Hydroxyproline/adverse effects , Hydroxyproline/metabolism , Glycine/pharmacology , Hydrogen Peroxide/pharmacology , Lipopolysaccharides/pharmacology , Osteoarthritis/chemically induced , Osteoarthritis/drug therapy , Osteoarthritis/prevention & control , Inflammation/metabolism , Collagen Type II/pharmacology , Peptides/pharmacology , Valine/adverse effects , Valine/metabolism , Cells, Cultured
19.
J Prosthet Dent ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38103970

ABSTRACT

This clinical report described the esthetic reconstruction of a localized severely resorbed right anterior maxilla associated with peri-implantitis. For vertical bone augmentation, guided bone regeneration surgery was performed by raising a flap with the remote incision technique, followed by soft tissue grafting and vestibuloplasty. The biologically oriented preparation technique was used to improve the health and stability of the peri-implant tissues. The surgical treatment and a novel method of prosthetic rehabilitation provided excellent esthetic and functional outcomes.

20.
J Med Food ; 26(12): 902-910, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38010847

ABSTRACT

Our study aimed to investigate whether unripe pear extract (UP) could provide protection against UVB-induced damage to both mouse skin and keratinocytes. We observed that UVB exposure, a common contributor to skin photoaging, led to wrinkle formation, skin dryness, and inflammation in mice. Nevertheless, these effects were mitigated in the groups of UVB-irradiated mice treated with UP. Moreover, UP treatment at 400 µg/mL increased the antioxidant enzyme activities (sodium dodecyl sulfate, 2.22-fold higher; catalase, 2.91-fold higher; GPx, 1.96-fold higher) along with sphingomyelin (1.58-fold higher) and hyaluronic acid (1.31-fold higher) levels in UVB-irradiated keratinocytes. In the keratinocytes irradiated with UVB, UP 400 µg/mL resulted in reduced cytokine production (TNF-α, 33.2%; IL-1ß, 45.3%; IL-6, 33.4%) and the expression of inflammatory pathway-related proteins. The findings indicate that UP has a direct protective effect on UVB-irradiated keratinocytes and is also able to shield against photoaging induced by UVB. Hence, it is suggested that UP could contribute to improved skin health by averting skin photoaging.


Subject(s)
Pyrus , Skin Aging , Animals , Mice , Mice, Hairless , Ultraviolet Rays/adverse effects , Keratinocytes , Skin , Antioxidants/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...