Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 14: 1383741, 2024.
Article in English | MEDLINE | ID: mdl-38638855

ABSTRACT

While normal B- and T-lymphocytes require antigenic ligands to become activated via their B- and T-cell receptors (BCR and TCR, respectively), B- and T-cell lymphomas show the broad spectrum of cell activation mechanisms regarding their dependence on BCR or TCR signaling, including loss of such dependence. These mechanisms are generally better understood and characterized for B-cell than for T-cell lymphomas. While some lymphomas, particularly the indolent, low-grade ones remain antigen-driven, other retain dependence on activation of their antigen receptors seemingly in an antigen-independent manner with activating mutations of the receptors playing a role. A large group of lymphomas, however, displays complete antigen receptor independence, which can develop gradually, in a stepwise manner or abruptly, through involvement of powerful oncogenes. Whereas some of the lymphomas undergo activating mutations of genes encoding proteins involved in signaling cascades downstream of the antigen-receptors, others employ activation mechanisms capable of substituting for these BCR- or TCR-dependent signaling pathways, including reliance on signaling pathways physiologically activated by cytokines. Finally, lymphomas can develop cell-lineage infidelity and in the extreme cases drastically rewire their cell activation mechanisms and engage receptors and signaling pathways physiologically active in hematopoietic stem cells or non-lymphoid cells. Such profound reprograming may involve partial cell dedifferentiation or transdifferentiation towards histocytes, dendritic, or mesodermal cells with various degree of cell maturation along these lineages. In this review, we elaborate on these diverse pathogenic mechanisms underlying cell plasticity and signaling reprogramming as well as discuss the related diagnostic and therapeutic implications and challenges.

2.
Article in English | MEDLINE | ID: mdl-37730436

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is a heterogenous group of lymphoid malignancies. Based on gene expression profiling, it has been subdivided into germinal center (GC)-derived and activated B-cell (ABC) types. Advances in molecular methodologies have further refined the subclassification of DLBCL, based on recurrent genetic abnormalities. Here, we describe a distinct case of DLBCL that presented in leukemic form. DNA sequencing targeting 275 genes revealed pathogenically relevant mutations of CD79B, MyD88, TP53, TBL1XR1, and PIM1 genes, indicating that this lymphoma would be best classified as MCD/C5 DLBCL, an ABC subtype. Despite an initial good clinical response to BTK inhibitor ibrutinib, anti-CD20 antibody rituxan, alkylating agent bendamustine, and hematopoietic stem-cell transplant, the lymphoma relapsed, accompanied by morphologic and molecular evidence of disease progression. Specifically, the recurrent tumor developed loss of TP53 heterozygosity (LOH) and additional chromosomal changes central to ABC DLBCL pathogenesis, such as PRDM1 loss. Acquired resistance to ibrutinib and rituxan was indicated by the emergence of BTK and FOXO1 mutations, respectively, as well as apparent activation of alternative cell-activation pathways, through copy-number alterations (CNAs), detected by high-resolution chromosomal microarrays. In vitro, studies of relapsed lymphoma cells confirmed resistance to standard BTK inhibitors but sensitivity to vecabrutinib, a noncovalent inhibitor active against both wild-type as well as mutated BTK. In summary, we provide in-depth molecular characterization of a de novo leukemic DLBCL and discuss mechanisms that may have contributed to the lymphoma establishment, progression, and development of drug resistance.


Subject(s)
Aniline Compounds , Lymphoma, Large B-Cell, Diffuse , Neoplasm Recurrence, Local , Piperidines , Humans , Rituximab , Genomics , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology
3.
Semin Roentgenol ; 57(2): 121-125, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35523524

ABSTRACT

Invasive apocrine carcinoma of the breast is a rare entity with an incidence of 3 or 4 cases per million women. Although apocrine breast cancers may have an aggressive clinical presentation, the 7-year cancer survival rate is the same as non-apocrine cancers. The prognosis of IAC is currently determined by conventional factors such as grade, tumor size, and nodal status. Targeted AR therapy is increasingly adopted with some positive results in clinical trials. This research may result in the development of a tailored treatment for these unusual and rare cancers.


Subject(s)
Bone Neoplasms , Breast Neoplasms , Carcinoma , Apocrine Glands/diagnostic imaging , Apocrine Glands/pathology , Bone Neoplasms/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Carcinoma/pathology , Female , Humans , Seasons
4.
Mod Pathol ; 21(10): 1271-7, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18487992

ABSTRACT

The American Society of Clinical Oncologists and College of American Pathologists have recently released new guidelines for laboratory testing of HER2 status in breast cancer, which require high levels (95%) of concordance between immunohistochemistry positive (3+) and fluorescence in situ hybridization-amplified cases, and between immunohistochemistry negative (0/1+) and fluorescence in situ hybridization-nonamplified cases; these required levels of concordance are significantly higher than those found in most published studies. We tested the hypothesis that a modification of the HER2 immunohistochemistry scoring system could significantly improve immunohistochemistry and fluorescence in situ hybridization concordance. A total of 6604 breast cancer specimens were evaluated for HER2 status by both immunohistochemistry and fluorescence in situ hybridization using standard methodologies. Results were compared when the standard immunohistochemistry scoring system was replaced by a normalized scoring system in which the HER2 score was derived by subtracting the score on the non-neoplastic breast epithelium from that on the tumor cells. Among the 6604 tumors, using a non-normalized immunohistochemistry scoring system, 267/872 (30.6%) of the immunohistochemistry 3+ cases proved to be fluorescence in situ hybridization nonamplified, whereas using the normalized scoring system only 30/562 (5.3%) of immunohistochemistry 3+ cases proved to be 'false positive'. The concordance rate between immunohistochemistry 3+ and fluorescence in situ hybridization-amplified cases using the normalized scoring method was 94.7%, whereas the concordance using the non-normalized method was only 69.4%. Extremely high concordance between immunohistochemistry and fluorescence in situ hybridization assessment of HER2 status in breast cancer is achievable, but to attain this high level of concordance, modification of the FDA-approved immunohistochemistry scoring system is required.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms/diagnosis , Genes, erbB-2 , Immunohistochemistry/methods , In Situ Hybridization, Fluorescence/methods , Receptor, ErbB-2 , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Humans , Practice Guidelines as Topic , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...