Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(11): 9389-9405, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38787938

ABSTRACT

TLR7/8 agonists are versatile immune stimulators capable of treating various diseases such as viral infections, autoimmune, and cancer. Despite the structural similarity of TLR7/8, their immune stimulation mechanisms and time-course responses significantly differ. In this study, a new series of TLR7-selective agonists was synthesized utilizing the economical building block 2,6-dichloropurine. Compound 27b showed the most potent activity on hTLR7 with an EC50 of 17.53 nM and demonstrated high hTLR7 selectivity (224 folds against TLR8). 27b effectively stimulated the secretion of proinflammatory cytokines in mouse macrophages and enhanced intranasal vaccine efficacy against influenza A virus in vivo. Assessment of humoral and mucosal antibody titers confirmed that 27b elevates IgG and IgA levels, protecting against both homologous and heterologous influenza viral infections. These findings suggest that 27b is a promising candidate as a vaccine adjuvant to prevent viral infections or as a robust immunomodulator with prolonged activity for treating immune-suppressed diseases.


Subject(s)
Administration, Intranasal , Drug Design , Influenza Vaccines , Purines , Toll-Like Receptor 7 , Toll-Like Receptor 7/agonists , Animals , Mice , Humans , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Purines/pharmacology , Purines/chemistry , Adjuvants, Vaccine/pharmacology , Adjuvants, Vaccine/chemistry , Structure-Activity Relationship , Mice, Inbred BALB C , Female , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Cytokines/metabolism , RAW 264.7 Cells , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemical synthesis , Adjuvants, Immunologic/chemistry
2.
Bioorg Med Chem Lett ; 94: 129461, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37652099

ABSTRACT

Tryptophan hydroxylase 1 (TPH1) has emerged as a target for the treatment of metabolic diseases including obesity and fatty liver disease. A series of xanthine derivatives were synthesized and evaluated for their TPH1 inhibition. Among the synthesized compounds, compound 40 showed good in vitro activity and liver microsomal stability. Docking studies revealed that compound 40 showed better binding to TPH1 via key intermolecular interactions involving the xanthine scaffold, imidazo-thiazolyl ring, and hydroxyl-containing phenacyl moiety. In addition, compound 40 effectively suppressed the adipocyte differentiation of 3 T3-L1 cells.


Subject(s)
Alkaloids , Non-alcoholic Fatty Liver Disease , Humans , Diuretics , Non-alcoholic Fatty Liver Disease/drug therapy , Obesity/drug therapy , Tryptophan Hydroxylase/antagonists & inhibitors , Xanthines/chemistry , Xanthines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...