Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 44(19): 4630-4633, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31568403

ABSTRACT

Squeezed states of light have received renewed attention due to their applicability to quantum-enhanced sensing. To take full advantage of their reduced noise properties to enhance atomic-based sensors, it is necessary to generate narrowband near or on atomic resonance single-mode squeezed states of light. We have previously generated bright two-mode squeezed states of light, or twin beams, that can be tuned to resonance with the D1 line of Rb87 with a non-degenerate four-wave-mixing process in a double-lambda configuration in a Rb85 vapor cell. Here, we report on the use of feedforward to transfer the amplitude quantum correlations present in the twin beams to a single beam for the generation of single-mode amplitude squeezed light. With this technique, we obtain a single-mode squeezed state with -2.9±0.1 dB of squeezing when tuned off resonance and -2.0±0.1 dB when tuned on resonance with the D1 F=2 to F'=2 transition of Rb87.

2.
Opt Express ; 26(25): 33366-33375, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30645489

ABSTRACT

Squeezed states of light have found their way into a number of applications in quantum-enhanced metrology due to their reduced noise properties. In order to extend such an enhancement to metrology experiments based on atomic ensembles, an efficient light-atom interaction is required. Thus, there is a particular interest in generating narrow-band squeezed light that is on atomic resonance. This will make it possible not only to enhance the sensitivity of atomic based sensors, but also to deterministically transfer quantum correlations between two distant atomic ensembles. We generate bright two-mode squeezed states of light, or twin beams, with a non-degenerate four-wave mixing (FWM) process in hot 85Rb in a double-lambda configuration. Given the proximity of the energy levels in the D1 line of 85Rb and 87Rb, we are able to operate the FWM in 85Rb in a regime that generates two-mode squeezed states in which both modes are simultaneously on resonance with transitions in the D1 line of 87Rb, one mode with the F = 2 to F' = 2 transition and the other one with the F = 1 to F' = 1 transition. For this configuration, we obtain an intensity difference squeezing level of 3.5 dB. Moreover, the intensity difference squeezing increases to -5.4 dB and -5.0 dB when only one of the modes of the squeezed state is resonant with the D1 F = 2 to F' =-2 or F = 1 to F' = 1 transition of 87Rb, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...