Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Neuropsychopharmacology ; 49(5): 796-805, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38182777

ABSTRACT

The human striatum can be subdivided into the caudate, putamen, and nucleus accumbens (NAc). In mice, this roughly corresponds to the dorsal medial striatum (DMS), dorsal lateral striatum (DLS), and ventral striatum (NAc). Each of these structures have some overlapping and distinct functions related to motor control, cognitive processing, motivation, and reward. Previously, we used a "time-of-death" approach to identify diurnal rhythms in RNA transcripts in these three human striatal subregions. Here, we identify molecular rhythms across similar striatal subregions collected from C57BL/6J mice across 6 times of day and compare results to the human striatum. Pathway analysis indicates a large degree of overlap between species in rhythmic transcripts involved in processes like cellular stress, energy metabolism, and translation. Notably, a striking finding in humans is that small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs) are among the most highly rhythmic transcripts in the NAc and this is not conserved in mice, suggesting the rhythmicity of RNA processing in this region could be uniquely human. Furthermore, the peak timing of overlapping rhythmic genes is altered between species, but not consistently in one direction. Taken together, these studies reveal conserved as well as distinct transcriptome rhythms across the human and mouse striatum and are an important step in understanding the normal function of diurnal rhythms in humans and model organisms in these regions and how disruption could lead to pathology.


Subject(s)
Corpus Striatum , Ventral Striatum , Humans , Mice , Animals , Mice, Inbred C57BL , Corpus Striatum/metabolism , Nucleus Accumbens , Gene Expression Profiling , Transcriptome
2.
Mol Psychiatry ; 28(11): 4777-4792, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37674018

ABSTRACT

Opioid craving and relapse vulnerability is associated with severe and persistent sleep and circadian rhythm disruptions. Understanding the neurobiological underpinnings of circadian rhythms and opioid use disorder (OUD) may prove valuable for developing new treatments for opioid addiction. Previous work indicated molecular rhythm disruptions in the human brain associated with OUD, highlighting synaptic alterations in the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc)-key brain regions involved in cognition and reward, and heavily implicated in the pathophysiology of OUD. To provide further insights into the synaptic alterations in OUD, we used mass-spectrometry based proteomics to deeply profile protein expression alterations in bulk tissue and synaptosome preparations from DLPFC and NAc of unaffected and OUD subjects. We identified 55 differentially expressed (DE) proteins in DLPFC homogenates, and 44 DE proteins in NAc homogenates, between unaffected and OUD subjects. In synaptosomes, we identified 161 and 56 DE proteins in DLPFC and NAc, respectively, of OUD subjects. By comparing homogenate and synaptosome protein expression, we identified proteins enriched specifically in synapses that were significantly altered in both DLPFC and NAc of OUD subjects. Across brain regions, synaptic protein alterations in OUD subjects were primarily identified in glutamate, GABA, and circadian rhythm signaling. Using time-of-death (TOD) analyses, where the TOD of each subject is used as a time-point across a 24-h cycle, we were able to map circadian-related changes associated with OUD in synaptic proteomes associated with vesicle-mediated transport and membrane trafficking in the NAc and platelet-derived growth factor receptor beta signaling in DLPFC. Collectively, our findings lend further support for molecular rhythm disruptions in synaptic signaling in the human brain as a key factor in opioid addiction.


Subject(s)
Nucleus Accumbens , Opioid-Related Disorders , Humans , Nucleus Accumbens/metabolism , Dorsolateral Prefrontal Cortex , Proteome/metabolism , Circadian Rhythm , Opioid-Related Disorders/metabolism , Prefrontal Cortex/metabolism
3.
bioRxiv ; 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37066169

ABSTRACT

Opioid craving and relapse vulnerability is associated with severe and persistent sleep and circadian rhythm disruptions. Understanding the neurobiological underpinnings of circadian rhythms and opioid use disorder (OUD) may prove valuable for developing new treatments for opioid addiction. Previous work indicated molecular rhythm disruptions in the human brain associated with OUD, highlighting synaptic alterations in the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc)-key brain regions involved in cognition and reward, and heavily implicated in the pathophysiology of OUD. To provide further insights into the synaptic alterations in OUD, we used mass-spectrometry based proteomics to deeply profile protein expression alterations in bulk tissue and synaptosome preparations from DLPFC and NAc of unaffected and OUD subjects. We identified 55 differentially expressed (DE) proteins in DLPFC homogenates, and 44 DE proteins in NAc homogenates, between unaffected and OUD subjects. In synaptosomes, we identified 161 and 56 DE proteins in DLPFC and NAc, respectively, of OUD subjects. By comparing homogenate and synaptosome protein expression, we identified proteins enriched specifically in synapses that were significantly altered in both DLPFC and NAc of OUD subjects. Across brain regions, synaptic protein alterations in OUD subjects were primarily identified in glutamate, GABA, and circadian rhythm signaling. Using time-of-death (TOD) analyses, where the TOD of each subject is used as a time-point across a 24- hour cycle, we were able to map circadian-related changes associated with OUD in synaptic proteomes related to vesicle-mediated transport and membrane trafficking in the NAc and platelet derived growth factor receptor beta signaling in DLPFC. Collectively, our findings lend further support for molecular rhythm disruptions in synaptic signaling in the human brain as a key factor in opioid addiction.

4.
Transl Psychiatry ; 12(1): 123, 2022 03 26.
Article in English | MEDLINE | ID: mdl-35347109

ABSTRACT

Severe and persistent disruptions to sleep and circadian rhythms are common in people with opioid use disorder (OUD). Preclinical evidence suggests altered molecular rhythms in the brain modulate opioid reward and relapse. However, whether molecular rhythms are disrupted in the brains of people with OUD remained an open question, critical to understanding the role of circadian rhythms in opioid addiction. Using subjects' times of death as a marker of time of day, we investigated transcriptional rhythms in the brains of subjects with OUD compared to unaffected comparison subjects. We discovered rhythmic transcripts in both the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc), key brain areas involved in OUD, that were largely distinct between OUD and unaffected subjects. Fewer rhythmic transcripts were identified in DLPFC of subjects with OUD compared to unaffected subjects, whereas in the NAc, nearly double the number of rhythmic transcripts was identified in subjects with OUD. In NAc of subjects with OUD, rhythmic transcripts peaked either in the evening or near sunrise, and were associated with an opioid, dopamine, and GABAergic neurotransmission. Associations with altered neurotransmission in NAc were further supported by co-expression network analysis which identified OUD-specific modules enriched for transcripts involved in dopamine, GABA, and glutamatergic synaptic functions. Additionally, rhythmic transcripts in DLPFC and NAc of subjects with OUD were enriched for genomic loci associated with sleep-related GWAS traits, including sleep duration and insomnia. Collectively, our findings connect transcriptional rhythm changes in opioidergic, dopaminergic, GABAergic signaling in the human brain to sleep-related traits in opioid addiction.


Subject(s)
Nucleus Accumbens , Opioid-Related Disorders , Analgesics, Opioid , Brain , Humans , Opioid-Related Disorders/genetics , Prefrontal Cortex
5.
Biol Psychiatry ; 90(8): 550-562, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34380600

ABSTRACT

BACKGROUND: Prevalence rates of opioid use disorder (OUD) have increased dramatically, accompanied by a surge of overdose deaths. While opioid dependence has been extensively studied in preclinical models, an understanding of the biological alterations that occur in the brains of people who chronically use opioids and who are diagnosed with OUD remains limited. To address this limitation, RNA sequencing was conducted on the dorsolateral prefrontal cortex and nucleus accumbens, regions heavily implicated in OUD, from postmortem brains in subjects with OUD. METHODS: We performed RNA sequencing on the dorsolateral prefrontal cortex and nucleus accumbens from unaffected comparison subjects (n = 20) and subjects diagnosed with OUD (n = 20). Our transcriptomic analyses identified differentially expressed transcripts and investigated the transcriptional coherence between brain regions using rank-rank hypergeometric orderlap. Weighted gene coexpression analyses identified OUD-specific modules and gene networks. Integrative analyses between differentially expressed transcripts and genome-wide association study datasets using linkage disequilibrium scores assessed the genetic liability of psychiatric-related phenotypes in OUD. RESULTS: Rank-rank hypergeometric overlap analyses revealed extensive overlap in transcripts between the dorsolateral prefrontal cortex and nucleus accumbens in OUD, related to synaptic remodeling and neuroinflammation. Identified transcripts were enriched for factors that control proinflammatory cytokine, chondroitin sulfate, and extracellular matrix signaling. Cell-type deconvolution implicated a role for microglia as a potential driver for opioid-induced neuroplasticity. Linkage disequilibrium score analysis suggested genetic liabilities for risky behavior, attention-deficit/hyperactivity disorder, and depression in subjects with OUD. CONCLUSIONS: Overall, our findings suggest connections between the brain's immune system and opioid dependence in the human brain.


Subject(s)
Nucleus Accumbens , Opioid-Related Disorders , Analgesics, Opioid/therapeutic use , Genome-Wide Association Study , Humans , Opioid-Related Disorders/genetics , Prefrontal Cortex
6.
Sci Rep ; 11(1): 2573, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33510298

ABSTRACT

Circadian variability is driven by genetics and Diversity Outbred (DO) mice is a powerful tool for examining the genetics of complex traits because their high genetic and phenotypic diversity compared to conventional mouse crosses. The DO population combines the genetic diversity of eight founder strains including five common inbred and three wild-derived strains. In DO mice and their founders, we established a high-throughput system to measure cellular rhythms using in vitro preparations of skin fibroblasts. Among the founders, we observed strong heritability for rhythm period, robustness, phase and amplitude. We also found significant sex and strain differences for these rhythms. Extreme differences in period for molecular and behavioral rhythms were found between the inbred A/J strain and the wild-derived CAST/EiJ strain, where A/J had the longest period and CAST/EiJ had the shortest. In addition, we measured cellular rhythms in 329 DO mice, which displayed far greater phenotypic variability than the founders-80% of founders compared to only 25% of DO mice had periods of ~ 24 h. Collectively, our findings demonstrate that genetic diversity contributes to phenotypic variability in circadian rhythms, and high-throughput characterization of fibroblast rhythms in DO mice is a tractable system for examining the genetics of circadian traits.


Subject(s)
Circadian Rhythm/physiology , Fibroblasts/metabolism , Animals , Female , Genetics , Male , Mice , Molecular Biology , Neurosciences
7.
PLoS Biol ; 18(1): e3000580, 2020 01.
Article in English | MEDLINE | ID: mdl-31935211

ABSTRACT

Our group recently characterized a cell-autonomous mammalian 12-h clock independent from the circadian clock, but its function and mechanism of regulation remain poorly understood. Here, we show that in mouse liver, transcriptional regulation significantly contributes to the establishment of 12-h rhythms of mRNA expression in a manner dependent on Spliced Form of X-box Binding Protein 1 (XBP1s). Mechanistically, the motif stringency of XBP1s promoter binding sites dictates XBP1s's ability to drive 12-h rhythms of nascent mRNA transcription at dawn and dusk, which are enriched for basal transcription regulation, mRNA processing and export, ribosome biogenesis, translation initiation, and protein processing/sorting in the Endoplasmic Reticulum (ER)-Golgi in a temporal order consistent with the progressive molecular processing sequence described by the central dogma information flow (CEDIF). We further identified GA-binding proteins (GABPs) as putative novel transcriptional regulators driving 12-h rhythms of gene expression with more diverse phases. These 12-h rhythms of gene expression are cell autonomous and evolutionarily conserved in marine animals possessing a circatidal clock. Our results demonstrate an evolutionarily conserved, intricate network of transcriptional control of the mammalian 12-h clock that mediates diverse biological pathways. We speculate that the 12-h clock is coopted to accommodate elevated gene expression and processing in mammals at the two rush hours, with the particular genes processed at each rush hour regulated by the circadian and/or tissue-specific pathways.


Subject(s)
Biological Clocks/genetics , Gene Expression Regulation , Ultradian Rhythm/genetics , X-Box Binding Protein 1/physiology , Animals , Cells, Cultured , Circadian Rhythm/genetics , Gene Expression Regulation/genetics , Gene Regulatory Networks/genetics , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Specificity/genetics , Protein Isoforms/genetics , Protein Isoforms/physiology , Time Factors , Transcription, Genetic , X-Box Binding Protein 1/genetics
8.
Psychopharmacology (Berl) ; 237(4): 979-996, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31897574

ABSTRACT

RATIONALE: Few effective treatments exist for cocaine use disorders due to gaps in knowledge about its complex etiology. Genetically defined animal models provide a useful tool for advancing our understanding of the biological and genetic underpinnings of addiction-related behavior and evaluating potential treatments. However, many attempts at developing mouse models of behavioral disorders were based on overly simplified single gene perturbations, often leading to inconsistent and misleading results in pre-clinical pharmacology studies. A genetically complex mouse model may better reflect disease-related behaviors. OBJECTIVES: Screening defined, yet genetically complex, intercrosses of the Collaborative Cross (CC) mice revealed two lines, RIX04/17 and RIX41/51, with extreme high and low behavioral responses to cocaine. We characterized these lines as well as their CC parents, CC004/TauUnc and CC041/TauUnc, to evaluate their utility as novel model systems for studying the biological and genetic mechanisms underlying behavioral responses to cocaine. METHODS: Behavioral responses to acute (initial locomotor sensitivity) and repeated (behavioral sensitization, conditioned place preference, intravenous self-administration) exposures to cocaine were assessed. We also examined the monoaminergic system (striatal tissue content and in vivo fast scan cyclic voltammetry), HPA axis reactivity, and circadian rhythms as potential mechanisms for the divergent phenotypic behaviors observed in the two strains, as these systems have a previously known role in mediating addiction-related behaviors. RESULTS: RIX04/17 and 41/51 show strikingly divergent initial locomotor sensitivity to cocaine with RIX04/17 exhibiting very high and RIX41/51 almost no response. The lines also differ in the emergence of behavioral sensitization with RIX41/51 requiring more exposures to exhibit a sensitized response. Both lines show conditioned place preference for cocaine. We determined that the cocaine sensitivity phenotype in each RIX line was largely driven by the genetic influence of one CC parental strain, CC004/TauUnc and CC041/TauUnc. CC004 demonstrates active operant cocaine self-administration and CC041 is unable to acquire under the same testing conditions, a deficit which is specific to cocaine as both strains show operant response for a natural food reward. Examination of potential mechanisms driving differential responses to cocaine show strain differences in molecular and behavioral circadian rhythms. Additionally, while there is no difference in striatal dopamine tissue content or dynamics, there are selective differences in striatal norepinephrine and serotonergic tissue content. CONCLUSIONS: These CC strains offer a complex polygenic model system to study underlying mechanisms of cocaine response. We propose that CC041/TauUnc and CC004/TauUnc will be useful for studying genetic and biological mechanisms underlying resistance or vulnerability to the stimulatory and reinforcing effects of cocaine.


Subject(s)
Cocaine-Related Disorders/genetics , Cocaine/administration & dosage , Collaborative Cross Mice/genetics , Locomotion/genetics , Reinforcement, Psychology , Reward , Animals , Behavior, Addictive/genetics , Behavior, Addictive/metabolism , Behavior, Addictive/psychology , Cocaine-Related Disorders/metabolism , Cocaine-Related Disorders/psychology , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dopamine Uptake Inhibitors/administration & dosage , Female , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Locomotion/drug effects , Male , Mice , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/metabolism , Self Administration , Species Specificity
9.
Sci Rep ; 9(1): 8909, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31222133

ABSTRACT

Proinflammatory signaling cascades have been implicated in the mechanism by which high fat diet (HFD) and saturated fatty acids (SFA) modulate fundamental circadian properties of peripheral clocks. Because the cytokines TNFα and IL-6 are key signals in HFD- and SFA-induced proinflammatory responses that ultimately lead to systemic insulin resistance, the present study examined the roles of these cytokines in the feedback modulation of peripheral circadian clocks by the proinflammatory SFA, palmitate. IL-6 and TNFα secretion in Bmal1-dLuc fibroblast cultures was increased during palmitate treatment although the time course and amplitude of the inductive response differed between these cytokines. Similar to the time-dependent phase shifts observed in response to palmitate, treatment with IL-6 or with the low dose (0.1 ng/ml) of TNFα at hour 12 (i.e., after forskolin synchronization) induced phase advances of fibroblast Bmal1-dLuc rhythms. In complementary experiments, treatment with neutralizing antibodies against these proinflammatory cytokines or their receptors to inhibit of IL-6- or TNFα-mediated signaling repressed palmitate-induced phase shifts of the fibroblast clock. These studies suggest that TNFα, IL-6 and other proinflammatory cytokines may mediate the feedback modulation of peripheral circadian clocks by SFA-induced inflammatory signaling.


Subject(s)
Circadian Clocks/genetics , Cytokines/physiology , Fatty Acids/pharmacology , Inflammation Mediators/physiology , Antibodies, Neutralizing/immunology , Circadian Rhythm/drug effects , Cytokines/immunology , Humans , Inflammation Mediators/immunology , Palmitates/pharmacology , Recombinant Proteins/pharmacology , Signal Transduction/drug effects
10.
BMC Cancer ; 19(1): 101, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30674294

ABSTRACT

Following publication of the original article [1], we have been notified that the tagging of one of the author names was done incorrectly in the XML version of the paper. The online and pdf versions of this paper are not affected by the change. Original and corrected tagging can be seen below. The original article has been corrected.

11.
Cell Mol Biol Lett ; 23: 9, 2018.
Article in English | MEDLINE | ID: mdl-29563926

ABSTRACT

BACKGROUND: Previous studies indicated that cadmium (Cd) increases PI3-kinase/Akt phosphorylation, resulting in an alteration in GSK-3ß activity. However, the mechanism of Cd-induced endoplasmic reticulum (ER) stress in neuronal cells has yet to be studied in needs further elucidation. We examined the role of GSK-3ß in Cd-induced neuronal cell death and the related downstream signaling pathways. METHODS: SH-SY5Y human neuroblastoma cells were treated with 10 or 20 µM BAPTA-AM and 1 µM wortmannin for 30 min and then incubated with 25 µM Cd for 12 h. Apoptotic cells were visualized via DAPI and PI staining. Data were evaluated with one-way analysis of variance (ANOVA) followed by Student's t-test. Data are expressed as the means ± SD of experiments performed at least three times. RESULTS: Treatment of human neuronal SH-SY5Y cells with Cd induced ER, stress as evidenced by the increased expression of GRP78, which is a marker of ER stress. Cd exposure significantly increased the phosphorylation of Akt at thr308 and ser473 and that of GSK-3ß at ser9 in a time-dependent manner, while the total protein levels of GSK-3ß and Akt did not change. Cd-induced apoptosis was higher in GSK-3ß-knockdown cells than in normal cells. CONCLUSIONS: Our data suggest that Akt/GSK-3ß signaling activated by Cd is involved in neuronal cell survival.


Subject(s)
Cadmium/toxicity , Glycogen Synthase Kinase 3 beta/metabolism , Apoptosis , Cell Line, Tumor , Cell Survival/drug effects , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Humans , Neurons/cytology , Neurons/drug effects , Neurons/enzymology , Proto-Oncogene Proteins c-akt/metabolism
12.
FASEB J ; 32(6): 3085-3095, 2018 06.
Article in English | MEDLINE | ID: mdl-29405095

ABSTRACT

Based on genetic models with mutation or deletion of core clock genes, circadian disruption has been implicated in the pathophysiology of metabolic disorders. Thus, we examined whether circadian desynchronization in response to shift work-type schedules is sufficient to compromise metabolic homeostasis and whether inflammatory mediators provide a key link in the mechanism by which alterations of circadian timekeeping contribute to diet-induced metabolic dysregulation. In high-fat diet (HFD)-fed mice, exposure to chronic shifts of the light-dark cycle (12 h advance every 5 d): 1) disrupts photoentrainment of circadian behavior and modulates the period of spleen and macrophage clock gene rhythms; 2) potentiates HFD-induced adipose tissue infiltration and activation of proinflammatory M1 macrophages; 3) amplifies macrophage proinflammatory cytokine expression in adipose tissue and bone marrow-derived macrophages; and 4) exacerbates diet-induced increases in body weight, insulin resistance, and glucose intolerance in the absence of changes in total daily food intake. Thus, complete disruption of circadian rhythmicity or clock gene function as transcription factors is not requisite to the link between circadian and metabolic phenotypes. These findings suggest that macrophage proinflammatory activation and inflammatory signaling are key processes in the physiologic cascade by which dysregulation of circadian rhythmicity exacerbates diet-induced systemic insulin resistance and glucose intolerance.-Kim, S.-M., Neuendorff, N., Alaniz, R. C., Sun, Y., Chapkin, R. S., Earnest, D. J. Shift work cycle-induced alterations of circadian rhythms potentiate the effects of high-fat diet on inflammation and metabolism.


Subject(s)
Adipose Tissue/metabolism , Circadian Rhythm/drug effects , Dietary Fats/adverse effects , Macrophages/metabolism , Signal Transduction/drug effects , Adipose Tissue/pathology , Animals , Cytokines/genetics , Cytokines/metabolism , Dietary Fats/pharmacology , Female , Inflammation/chemically induced , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Macrophages/pathology , Male , Mice , Mice, Transgenic
13.
BMC Cancer ; 18(1): 43, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29316898

ABSTRACT

BACKGROUND: The circadian clock is the basis for biological time keeping in eukaryotic organisms. The clock mechanism relies on biochemical signaling pathways to detect environmental stimuli and to regulate the expression of clock-controlled genes throughout the body. MAPK signaling pathways function in both circadian input and output pathways in mammals depending on the tissue; however, little is known about the role of p38 MAPK, an established tumor suppressor, in the mammalian circadian system. Increased expression and activity of p38 MAPK is correlated with poor prognosis in cancer, including glioblastoma multiforme; however, the toxicity of p38 MAPK inhibitors limits their clinical use. Here, we test if timed application of the specific p38 MAPK inhibitor VX-745 reduces glioma cell invasive properties in vitro. METHODS: The levels and rhythmic accumulation of active phosphorylated p38 MAPK in different cell lines were determined by western blots. Rhythmic luciferase activity from clock gene luciferase reporter cells lines was used to test the effect of p38 MAPK inhibition on clock properties as determined using the damped sine fit and Levenberg-Marquardt algorithm. Nonlinear regression and Akaike's information criteria were used to establish rhythmicity. Boyden chamber assays were used to measure glioma cell invasiveness following time-of-day-specific treatment with VX-745. Significant differences were established using t-tests. RESULTS: We demonstrate the activity of p38 MAPK cycles under control of the clock in mouse fibroblast and SCN cell lines. The levels of phosphorylated p38 MAPK were significantly reduced in clock-deficient cells, indicating that the circadian clock plays an important role in activation of this pathway. Inhibition of p38 MAPK activity with VX-745 led to cell-type-specific period changes in the molecular clock. In addition, phosphorylated p38 MAPK levels were rhythmic in HA glial cells, and high and arrhythmic in invasive IM3 glioma cells. We show that inhibition of p38 MAPK activity in IM3 cells at the time of day when the levels are normally low in HA cells under control of the circadian clock, significantly reduced IM3 invasiveness. CONCLUSIONS: Glioma treatment with p38 MAPK inhibitors may be more effective and less toxic if administered at the appropriate time of the day.


Subject(s)
CLOCK Proteins/genetics , Circadian Clocks/genetics , Glioblastoma/drug therapy , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Animals , Cell Lineage/drug effects , Fibroblasts/metabolism , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Luciferases , Mice , Neoplasm Invasiveness/genetics , Phosphorylation , Pyridazines/administration & dosage , Pyrimidines/administration & dosage , Signal Transduction/genetics , p38 Mitogen-Activated Protein Kinases/genetics
14.
EBioMedicine ; 7: 100-11, 2016 May.
Article in English | MEDLINE | ID: mdl-27322464

ABSTRACT

Inflammatory signaling may play a role in high-fat diet (HFD)-related circadian clock disturbances that contribute to systemic metabolic dysregulation. Therefore, palmitate, the prevalent proinflammatory saturated fatty acid (SFA) in HFD and the anti-inflammatory, poly-unsaturated fatty acid (PUFA), docosahexaenoic acid (DHA), were analyzed for effects on circadian timekeeping and inflammatory responses in peripheral clocks. Prolonged palmitate, but not DHA, exposure increased the period of fibroblast Bmal1-dLuc rhythms. Acute palmitate treatment produced phase shifts of the Bmal1-dLuc rhythm that were larger in amplitude as compared to DHA. These phase-shifting effects were time-dependent and contemporaneous with rhythmic changes in palmitate-induced inflammatory responses. Fibroblast and differentiated adipocyte clocks exhibited cell-specific differences in the time-dependent nature of palmitate-induced shifts and inflammation. DHA and other inhibitors of inflammatory signaling (AICAR, cardamonin) repressed palmitate-induced proinflammatory responses and phase shifts of the fibroblast clock, suggesting that SFA-mediated inflammatory signaling may feed back to modulate circadian timekeeping in peripheral clocks.


Subject(s)
Circadian Clocks/drug effects , Fatty Acids, Unsaturated/pharmacology , Fatty Acids/pharmacology , Interleukin-6/genetics , NF-kappa B/metabolism , Adipocytes/classification , Adipocytes/drug effects , Adipocytes/immunology , Cell Differentiation/drug effects , Cell Line , Circadian Rhythm/drug effects , Docosahexaenoic Acids/pharmacology , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/immunology , Gene Expression Regulation/drug effects , Humans , Palmitic Acid/pharmacology , Phosphorylation , Signal Transduction/drug effects
15.
FEBS Lett ; 588(17): 3015-22, 2014 Aug 25.
Article in English | MEDLINE | ID: mdl-24928439

ABSTRACT

Based on their extracellular expression and targeting of the clock gene Bmal1, miR-142-3p and miR-494 were analyzed for evidence of vesicle-mediated communication between cells and intracellular functional activity. Our studies demonstrate that: miR-142-3p+miR-494 overexpression decreases endogenous BMAL1 levels, increases the period of Per2 oscillations, and increases extracellular miR-142-3p/miR-494 abundance in conditioned medium; miRNA-enriched medium increases intracellular expression of miR-142-3p and represses Bmal1 3'-UTR activity in naïve cells; and inhibitors of vesicular trafficking modulate intercellular communication of these miRNAs and ensemble Per2 rhythms. Thus, miR-142-3p and miR-494 may function as cis- and trans-acting signals contributing to local temporal coordination of cell-autonomous circadian clocks.


Subject(s)
Circadian Clocks/genetics , MicroRNAs/genetics , ARNTL Transcription Factors/genetics , Animals , Cell Communication , Endocytosis , Exocytosis , Extracellular Space/metabolism , Gene Expression Regulation/genetics , HEK293 Cells , Humans , Mice , MicroRNAs/metabolism , NIH 3T3 Cells
16.
J Biol Chem ; 289(23): 16374-88, 2014 Jun 06.
Article in English | MEDLINE | ID: mdl-24770415

ABSTRACT

The circadian clockworks gate macrophage inflammatory responses. Given the association between clock dysregulation and metabolic disorders, we conducted experiments to determine the extent to which over-nutrition modulates macrophage clock function and whether macrophage circadian dysregulation is a key factor linking over-nutrition to macrophage proinflammatory activation, adipose tissue inflammation, and systemic insulin resistance. Our results demonstrate that 1) macrophages from high fat diet-fed mice are marked by dysregulation of the molecular clockworks in conjunction with increased proinflammatory activation, 2) global disruption of the clock genes Period1 (Per1) and Per2 recapitulates this amplified macrophage proinflammatory activation, 3) adoptive transfer of Per1/2-disrupted bone marrow cells into wild-type mice potentiates high fat diet-induced adipose and liver tissue inflammation and systemic insulin resistance, and 4) Per1/2-disrupted macrophages similarly exacerbate inflammatory responses and decrease insulin sensitivity in co-cultured adipocytes in vitro. Furthermore, PPARγ levels are decreased in Per1/2-disrupted macrophages and PPARγ2 overexpression ameliorates Per1/2 disruption-associated macrophage proinflammatory activation, suggesting that this transcription factor may link the molecular clockworks to signaling pathways regulating macrophage polarization. Thus, macrophage circadian clock dysregulation is a key process in the physiological cascade by which diet-induced obesity triggers macrophage proinflammatory activation, adipose tissue inflammation, and insulin resistance.


Subject(s)
Bone Marrow Cells/metabolism , Diet, High-Fat , Inflammation/metabolism , Insulin Resistance , Period Circadian Proteins/metabolism , Adipocytes/metabolism , Animals , Coculture Techniques , Macrophages/metabolism , Mice , Mice, Inbred C57BL , PPAR gamma/metabolism
17.
BMC Neurol ; 11: 51, 2011 May 12.
Article in English | MEDLINE | ID: mdl-21569380

ABSTRACT

BACKGROUND: Multiple pathogenic factors may contribute to the pathophysiology of Alzheimer's disease (AD). Peripheral blood markers have been used to assess biochemical changes associated with AD and mild cognitive impairment (MCI) and involved in their pathophysiology. METHODS: Plasma samples and clinical data were obtained from participants in the Ansan Geriatric Study (AGE study). Plasma concentrations of four candidate biomarkers were measured in the normal control (NC), MCI, and AD group: interleukin-8 (IL-8), IL-10, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor-α (TNF-α).Body mass index (BMI), MMSE (Mini Mental State Examination), CDR(Clinical Dementia Rating) score and homocystein level were recorded with social and demographic information. RESULTS: Total of 59 subjects were randomly selected for this analysis [NC (n = 21), MCI(n = 20) and AD(n = 18)]. In demographic data, educational year was correlated with the diagnosis states (p < 0.0001). No significant differences in cardiovascular disease, BMI and use of NSAIDs were found in MCI or AD group compared with NC group, respectively. The involvement of inflammatory illness or conditions in subjects, WBC count, fibrinogen and homocystein of the three groups, but no significant differences were found in each groups. The plasma IL-8 level was lower in MCI and AD patients compared with the normal control group (respectively, p < 0.0001). The MCI and AD patients had similar MCP-1, IL-10, and TNF-α level. CONCLUSIONS: Our study suggests the existence of an independent and negative relationship between plasma IL-8 levels and functional status in MCI and AD patients.


Subject(s)
Alzheimer Disease/complications , Cyclooxygenase 2/blood , Cytokines/blood , Inflammation , Aged , Aged, 80 and over , Alzheimer Disease/blood , Analysis of Variance , Biomarkers/blood , Cognition Disorders/blood , Cognition Disorders/complications , Female , Follow-Up Studies , Humans , Inflammation/blood , Inflammation/diagnosis , Inflammation/etiology , Male , Psychiatric Status Rating Scales , Random Allocation , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...