Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 151: 59-68, 2018 05.
Article in English | MEDLINE | ID: mdl-29522713

ABSTRACT

Exendin-4, a 39 amino acid peptide isolated from the saliva of the Gila monster, plays an important role in regulating glucose homeostasis, and is used clinically for the treatment of type 2 diabetes. Exendin-4 shares 53% sequence identity with the incretin hormone glucagon-like peptide 1 (GLP-1) but, unlike GLP-1, is highly resistant to proteolytic enzymes such as dipeptidyl peptidase IV (DPP-IV) and neutral endopeptidase 24.11 (NEP 24.11). Herein, we focused on the structure and function of the C-terminal Trp-cage of exendin-4, and suggest that it may be structurally required for resistance to proteolysis by NEP 24.11. Using a series of substitutions and truncations of the C-terminal Trp-cage, we found that residues 1-33, including the N-terminal and helical regions of wild-type (WT) exendin-4, is the minimum motif required for both high peptidase resistance and potent activity toward the GLP-1 receptor comparable to WT exendin-4. To improve the therapeutic utility of C-terminally truncated exendin-4, we incorporated various fatty acids into exendin-4(1-33) in which Ser33 was substituted with Lys for acylation. Exendin-4(1-32)K-capric acid exhibited the most well balanced activity, with much improved therapeutic utility for regulating blood glucose and body weight relative to WT exendin-4.


Subject(s)
Exenatide/chemistry , Exenatide/therapeutic use , Fatty Acids/chemistry , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Peptide Fragments/chemistry , Animals , Diabetes Mellitus, Experimental/drug therapy , Dipeptidyl Peptidase 4/chemistry , Drug Stability , Exenatide/blood , Glucagon-Like Peptide 1/chemistry , Glucagon-Like Peptide-1 Receptor/chemistry , Hypoglycemic Agents/blood , Male , Mice , Mice, Inbred C57BL , Neprilysin/chemistry , Peptide Hydrolases , Protein Conformation , Proteolysis
2.
Cancer Chemother Pharmacol ; 80(2): 363-369, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28660432

ABSTRACT

PURPOSE: AGM-130 is a cyclin-dependent kinase inhibitor that exhibits dose-dependent efficacy in xenograft mouse models. During preclinical pharmacokinetic (PK) studies, mice and rats showed comparable PK parameters while dogs showed unusually high clearance (CL), which has made human PK prediction challenging. To address this discrepancy, we performed a human microdosing PK and developed a mouse PK/PD model in order to guide the first-in-human studies. METHODS: A microdose of AGM-130 was given via intravenous injection to healthy subjects. Efficacy data obtained using MCF-7 breast cancer cells implanted in mice was analyzed using pre-existing tumor growth inhibition models. We simulated a human PK/PD profile with the PK parameters obtained from the microdose study and the PD parameters estimated from the xenograft PK/PD model. RESULTS: The human CL of AGM-130 was 3.08 L/h/kg, which was comparable to CL in mice and rats. The time-courses of tumor growth in xenograft model was well described by a preexisting model. Our simulation indicated that the human doses needed for 50 and 90% inhibition of tumor growth were about 100 and 400 mg, respectively. CONCLUSIONS: This is the first report of using microdose PK and xenograft PK/PD model to predict efficacious doses before the first-in-human trial in cancer patients. In addition, this work highlights the importance of integration of all of information in PK/PD analysis and illustrates how modeling and simulation can be used to add value in the early stages of drug development.


Subject(s)
Antineoplastic Agents/administration & dosage , Breast Neoplasms/drug therapy , Indoles/administration & dosage , Models, Biological , Oximes/administration & dosage , Adult , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Dose-Response Relationship, Drug , Female , Humans , Indoles/pharmacokinetics , Indoles/pharmacology , MCF-7 Cells , Male , Mice , Mice, Inbred ICR , Mice, Nude , Oximes/pharmacokinetics , Oximes/pharmacology , Species Specificity , Xenograft Model Antitumor Assays , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...