Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 338: 122678, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37804904

ABSTRACT

The emission of volatile organic compounds (VOCs) has led to significant deterioration in air quality, making it imperative to ensure that these compounds are removed from emission sources before they are released into the atmosphere. In this context, the present study recycled spent primary batteries to use their zinc rods waste (ZRW) as a palladium catalyst support for the removal of harmful VOCs. To this end, palladium supported on ZRW (Pd/ZRW) catalysts were prepared and tested for the catalytic oxidation of benzene, methylbenzene and 1,2-dimethylbenzene. The physicochemical properties of the Pd/ZRW catalysts were carefully characterized by ICP-OES, BET, SEM, XRD, FE-TEM, XPS, and H2-TPR analyses. The main component of ZRW was identified as ZnO. Consistent with expectations, increases in the loading of Pd from 0.1 to 1.0 wt% in the Pd/ZRW catalysts resulted in enhanced VOCs removal efficiency. The reaction temperature required for the complete oxidation (100% removal efficiency) of methylbenzene and 1,2-dimethylbenzene on the 1.0 wt% Pd/ZRW catalyst was below 340 °C at a gas hourly space velocity of 50,000 h-1. TEM, XPS, and H2-TPR results implied that the enhancement of catalytic activity with the addition of Pd could be attributed to the readily movable surface lattice oxygen as well as the active component (Pd species). Ultimately, ZRW of spent primary batteries appear to show promise as a catalyst support for VOCs removal. This study has introduced a novel strategy for reducing air pollutants by utilizing waste, which promotes the disposal of hazardous solid waste and ensures clean air quality.


Subject(s)
Volatile Organic Compounds , Palladium/chemistry , Zinc , Xylenes , Acids , Oxidation-Reduction , Toluene , Catalysis
2.
Chemosphere ; 308(Pt 1): 136163, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36030939

ABSTRACT

This study developed a new water treatment method using liquid-phase plasma (LPP) process that can decompose oxytetracycline (OTC) remaining in the aquatic environment. Relatedly, the OTC causes damage to the human body and cannot be removed by traditional water treatment methods. The study also prepared Fe/TiO2 photocatalyst responding to visible light using the LPP process. In particular, the OTC decomposition efficiency of the LPP process improved by more than 10% with the use of the Fe/TiO2 photocatalyst as compared to that of the one with the use of bare TiO2 photocatalyst. Further, the optimal LPP process parameters and Fe/TiO2 photocatalyst amount in the LPP process for OTC decomposition were established in the study. Finally, the degradation pathway of the OTC in the LPP process was found based on the five intermediates of the LPP reaction that were detected by the liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analysis. In particular, the decomposition pathway was estimated to be involving the mineralization of the OTC through demethylation, deamination, dehydration, and ring cleavage.


Subject(s)
Oxytetracycline , Water Pollutants, Chemical , Chromatography, Liquid , Humans , Iron/analysis , Oxytetracycline/chemistry , Tandem Mass Spectrometry , Titanium , Water Pollutants, Chemical/analysis
3.
Nanomaterials (Basel) ; 11(12)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34947734

ABSTRACT

The mono and bi-metallic nanoparticles have conspicuous properties and are widely used in the environment, energy, and medical fields. In this study, bimetallic nanoparticles composed of silver and iron were precipitated on the surface of activated carbon in a single process using plasma in liquid process (PLP). Silver-iron ions and various radicals were actively generated in the aqueous reactant solution by the PLP. Although metals were precipitated on AC depending on the number of precursors added to the aqueous reactant solution, the standard reduction potential of silver ions was higher than that of iron ions, so silver precipitated on AC. The silver precipitate on AC was a mixture of metallic silver and silver oxide, and iron was present as Fe3O4. Spherical nanoparticles, 100-120 nm in size, were observed on the surface of the Ag-Fe/AC composite. The composition of the bimetallic nanoparticles could be controlled by considering the ionization tendency and standard reduction potential of metal ions and controlling the concentration of the precursors. The PLP presented in this study can be applied to the preparing method of bimetallic nanoparticle/carbon materials and can be expected to be used in the prepare of energy and environmental materials such as MFC and absorption materials for removing pollutants.

4.
Int J Mol Sci ; 22(24)2021 Dec 18.
Article in English | MEDLINE | ID: mdl-34948387

ABSTRACT

This study examined the H2 production characteristics from a decomposition reaction using liquid-phase plasma with a bismuth ferrite catalyst. The catalyst was prepared using a sol-gel reaction method. The physicochemical and optical properties of bismuth ferrite were analyzed. H2 production was carried out from a distilled water and aqueous methanol solution by direct irradiation via liquid-phase plasma. The catalyst absorbed visible-light over 610 nm. The measured bandgap of the bismuth ferrite was approximately 2.0 eV. The liquid-phase plasma emitted UV and visible-light simultaneously according to optical emission spectrometry. Bismuth ferrite induced a higher H2 production rate than the TiO2 photocatalyst because it responds to both UV and visible light generated from the liquid-phase plasma.


Subject(s)
Bismuth/chemistry , Ferric Compounds/chemistry , Hydrogen/chemistry , Water/chemistry , Catalysis , Phase Transition , Plasma Gases/chemistry
5.
Chemosphere ; 276: 130209, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34088094

ABSTRACT

A large amount of spent batteries is produced annually. When spente batteries are buried, their harmful components may contaminate soil and water. Therefore, recycling of spent batteries is essential for environmental reasons. We evaluated the BM (black mass) of spent Zn/Mn alkaline batteries as a catalyst substance for the catalytic combustion of volatile organic compounds (VOCs: benzene, toluene, and o-xylene). The SBM catalyst (black mass-based catalyst) was prepared by treating BM with 0.1 N of sulfuric acid solution. Major elements of the SBM catalyst were manganese, zinc, iron, aluminum, potassium, and sodium except for carbon. In addition, to find out the additive effect of palladium on the SBM catalyst, we prepared the Pd/SBM catalysts using a conventional impregnation method. We investigated the physicochemical properties of the SBM and Pd/SBM catalysts by instrumental analysis. Benzene, toluene, and o-xylene (BTX) were oxidized completely over the SBM catalyst at reaction temperatures less than 410, 340, and 410 °C, respectively (gas hourly space velocity: 40,000 h-1). As expected, for the Pd/SBM catalysts, increasing the palladium loading on the SBM from 0.1 wt% to 1.0 wt% increased the conversions of BTX. In the 1.0 wt% Pd/SBM catalyst, the reaction temperatures for catalytic combustion of BTX were greatly reduced to 310, 260, and 250 °C, respectively (gas hourly space velocity: 40,000 h-1). Instrumental analysis indicated that the increase in activity by adding palladium resulted from the active ingredient (palladium oxide: PdO) and better redox properties.


Subject(s)
Volatile Organic Compounds , Catalysis , Palladium , Zinc
6.
J Nanosci Nanotechnol ; 21(9): 4974-4979, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33691902

ABSTRACT

In this study, we prepared chitosan beads cross-linked with epichlorohydrin (CB-ECH) to improve the removal of nitrate in groundwater. It was confirmed that CB-ECH exhibited higher thermal stability and well-developed nano-pores compared to the pure chitosan beads (CB) by the thermogravimetric analyzer, nitrogen gas adsorption and desorption isotherm, and field emission scanning microscopy analysis. The CB-ECH showed a higher nitrate adsorption amount than the pure CB. Nitrate adsorption behaviors of CB-ECH were further investigated using adsorption isotherm, adsorption kinetics, adsorption energy distribution, and Gibbs free energy distribution models. The adsorption equilibrium and kinetics of nitrate ion on CB-ECH were well explained by the Sips isotherm and homogeneous surface diffusion model, respectively. It was also found from the AED analysis that the CB-ECH represent the heterogeneous adsorption behaviors for nitrate.


Subject(s)
Chitosan , Water Pollutants, Chemical , Adsorption , Epichlorohydrin , Hydrogen-Ion Concentration , Kinetics , Nitrates , Water
7.
J Nanosci Nanotechnol ; 21(7): 3868-3871, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33715707

ABSTRACT

In this study, the effect of Ru-Mn bimetallic catalysts in combination with a zeolite support on the removal of toluene in the presence of ozone at room temperature was investigated. Desili-cated HZSM-5 (DZSM) was fabricated and applied as a Ru-Mn support for the removal of toluene (100 ppm) in the presence of ozone (1000 ppm) at room temperature. The surface area, pore volume, and average pore size of Ru-Mn with a DZSM support (RuMn/DZSM) were measured and compared with those of Ru-Mn/HZSM-5 (RuMn/HZSM). The pore size of RuMn/DZSM (69 Å) was much larger than that of RuMn/HZSM-5 (5.5 Å). In addition, the pore volumes of RuMn/DZSM and RuMn/HZSM were 0.64 and 0.25 cm³/g, respectively. Furthermore, the ratios of Mn³+/Mn4+ and Ovacancy/Olattice of RuMn/DZSM were larger than those of RuMn/HZSM-5. The removal efficiency of toluene of RuMn/DZSM was higher than that of RuMn/HZSM due to its larger pore volume, pore size, and the increased ratios of Mn³+/Mn4+ and Ovacancy/Olattice.


Subject(s)
Nanopores , Ozone , Zeolites , Catalysis , Temperature , Toluene
8.
J Nanosci Nanotechnol ; 21(7): 3872-3876, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33715708

ABSTRACT

This study examined the catalytic effects of Al-MCM-41 on the pyrolysis of wood plastic composite via the thermogravimetric analysis (TGA) and model-free kinetic analysis. Al-MCM-41 containing nanopores, with a high BET surface area (633 m²/g) and acidity (SiO2/Al2O3:25), reduced the decomposition temperature of wood and plastic mixtures (PE and PP) in a wood-plastic composite. The average activation energy for the catalytic pyrolysis of wood plastic composite, which was calculated via a model-free kinetic analysis method (Ozawa) of TGA, was also lower at all conversions than those of non-catalytic pyrolysis. This suggests that the pores of Al-MCM-41 and its high cracking efficiency allow the effective diffusion of wood plastic composite components.


Subject(s)
Pyrolysis , Wood , Kinetics , Plastics , Silicon Dioxide , Thermogravimetry
9.
J Nanosci Nanotechnol ; 21(7): 4060-4066, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33715745

ABSTRACT

The complete oxidation of toluene (as a model volatile organic compound) was studied to determine the influence of adding a transition metal (Mn, Cr, Fe, Co, and Ni) to the 5 Cu/Al catalyst. The physcochemical properties of the catalysts were characterized by Brunauer-Emmett-Teller (BET) surface area analysis, X-ray diffraction (XRD) analysis, field emission transmission electron microscopy (FE/TEM), and hydrogen temperature programmed reduction (H2-TPR). The catalytic activity of the supported bimetallic catalysts followed the order: 5Cu-5Mn/Al > 5Cu-5Cr/Al > 5Cu-5Fe/Al > 5Cu-5Co/Al > 5Cu > 5Cu-5Ni/Al, based on the temperature for T90 of toluene conversion (T90). Two different reaction mechanisms (mixing and the synergistic effect) were operative in the supported bimetallic catalysts except for the 5Cu-5Mn/Al and 5Cu-5Ni/Al catalysts, on the basis of the reaction temperature. The difference between the electronegativity of copper and the added transition metal was associated with the catalytic activity.

10.
Environ Res ; 195: 110899, 2021 04.
Article in English | MEDLINE | ID: mdl-33610581

ABSTRACT

Naproxen (NPX), one of the representative non-steroidal anti-inflammatory drug (NSAID) ingredients, was decomposed by plasma in liquid process (PiLP). Strongly oxidized species generated in the plasma field of the PiLP, such as OH radicals, were confirmed by optical emission spectroscopy Increasing the operation parameters (pulse width, frequency and applied voltage) of the power supply promoted plasma field generation and OH radical generation, and affected the NPX decomposition rate. Although the NPX decomposition reaction rate was improved by up to 18-30% by adding TiO2 photocatalyst powder and H2O2 to PiLP, but the optimal addition amount should be determined considering the plasma generation and scavenger effects. A decomposition pathway was proposed, in which NPX was mineralized into CO2 and H2O through five intermediates mainly by decarboxylation, demethylation, hydroxylation, and dehydration reactions via hydroxyl radicals.


Subject(s)
Naproxen , Pharmaceutical Preparations , Hydrogen Peroxide , Plasma , Titanium
11.
Environ Sci Pollut Res Int ; 28(19): 24552-24557, 2021 May.
Article in English | MEDLINE | ID: mdl-32533488

ABSTRACT

Oxidation of o-xylene was performed using alkaline battery-based catalyst doped with platinum to investigate the properties and activities. O-xylene was selected as the model of volatile organic compound (VOC) in this work. Physicochemical properties of the selected catalysts were characterized by FE/TEM (field emission transmission electron microscopy), BET (Brunauer-Emmett-Teller) analysis, XRD (X-ray powder diffraction), SEM/EDX (scanning electron microscopy/energy dispersive X-ray spectroscopy), and H2-TPR (hydrogen temperature programmed reduction). Major elements of the spent alkaline battery-based catalyst treated with sulfuric acid solution [SAB (400) catalyst] were manganese, zinc, iron, oxygen, carbon, chlorine, aluminum, sodium, silicon, and potassium. Increasing the doping amount of platinum on SAB (400) catalyst from 0.1 to 1 wt% increased particle size of platinum and lowered the temperature of TPR (TTP) for SAB (400) catalyst. Better redox properties were achieved with an increase in the o-xylene conversion according to the doping amount of platinum. When GHSV (gas hourly space velocity) was 40,000 h-1, o-xylene was oxidized completely over SAB (400) catalyst and 1.0 wt% Pt/SAB(400) catalyst at temperatures of 400 °C and 280 °C, respectively.


Subject(s)
Doping in Sports , Platinum , Catalysis , Oxidation-Reduction , Xylenes
12.
J Hazard Mater ; 403: 123929, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33264979

ABSTRACT

A spent alkaline battery-based (SB) catalyst was prepared from the black mass of a spent alkaline battery to determine the potential of recycling spent alkaline batteries as catalysts for the total oxidation of hydrocarbons. Five different acids (H2SO4, HNO3, C2H2O4, HCl, and H3PO4) were used to examine the effect of acid treatment on catalytic activity during catalyst preparation. Hexane, benzene, toluene, and o-xylene (HBTX) were adopted as the VOCs for experiments. The properties of the prepared catalysts were studied using ICP/OES, BET, XRD, ATR/FTIR, TGA, SEM, and H2-TPR analyses. The results showed that acid treatment significantly influenced the activity of the SB (400) catalyst, with the type of acid also found to greatly influence the activity of the catalyst. The order of activity according to the type of acid was H2SO4 > HNO3 > C2H2O4 > HCl > H3PO4 > none. Good performance of an acid-treated SB catalyst was associated with high concentrations of manganese and iron and a large BET surface area. In addition, the sequence in which the TPR peaks appeared at low temperatures according to each acid treatment was consistent with that of catalyst activity.

13.
J Hazard Mater ; 399: 123047, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32937711

ABSTRACT

To recover the spent vanadium compound, Rhodamine-B-based Schiff's base ligand (L1) was synthesized via ultrasonication process and was evaluated with vanadyl sulfate (VOSO4), which has shown considerable selectivity towards V(IV). The change of the solution color from colorless to pink is attributed to L1 after the reaction with vanadium ion owing to the successful formation of the vanadium complex and the opening of the spirolactam ring in the L1 structure. In FT-IR spectra, the vanadyl peaks are co-existed with the L1 structure, which confirmed the complex formation of the L1 with vanadium. Similarly, the binding energy of V(IV) was identified at 516.2 eV for V2p3/2 in XPS spectra. The new strategy for VOSO4 recovery was established through solvent extraction and acid leaching. After recovery process, the absence of vanadium peak in the XPS confirmed the complete removal of V(IV) from the complex. The recovered VOSO4 solution used as an electrolyte in vanadium redox flow battery (VRFB) systems, where the unit cell performance is comparable with the conventional electrolyte solution. The advantage of study is reuse of VOSO4 as a resource for energy storage applications.

14.
J Hazard Mater ; 399: 123087, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32526438

ABSTRACT

The compound 1,4-dioxane (DO) irritates the eyes, skin, and mucous membrane and is classified as a carcinogen. In this study, the decomposition of DO by photocatalytic reaction using liquid phase plasma (LPP) with photocatalyst was suggested. Plasma was directly discharged as an aqueous DO solution to enhance photocatalytic decomposition activity. To increase the decomposition efficiency of DO by plasma, bismuth ferrite (BFO) prepared by a sol-gel method was introduced as a visible-light photocatalyst. In the application of LPP and BFO photocatalyst, the decomposition of DO by photocatalytic reaction was evaluated. BFO showed UV-vis diffusion reflectance spectroscopy results of absorption of UV and visible light over 600 nm, with a bandgap of approximately 2.2 eV. BFO showed visible light photochemical reaction characteristics to decompose particulate matter (PM) in the irradiation of 6 W visible light LED lamps. It seems that the narrow bandgap of BFO led to the photocatalytic activity in the visible light. In the decomposition reaction of DO with a photocatalyst and LPP, BFO showed better decomposition efficiency than TiO2. BFO can cause photocatalytic reactions in both UV and visible light in the case of LPP irradiation, which emits strong ultraviolet and visible light.

15.
J Nanosci Nanotechnol ; 20(9): 5579-5582, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32331138

ABSTRACT

In this study, molybdenum oxide/carbon nanocomposites (MOCNCs) were prepared by precipitating molybdenum oxide nanoparticles on activated carbon powder using liquid phase plasma process. The molybdenum oxide nanoparticles were impregnated on the AC surface and the amount impregnated was dependent on the concentration of the molybdenum precursor. MoO3 nanoparticles were predominantly precipitated and their size was about 20-80 nm. The specific capacitance of MOCNCs was increased with increasing the amount of molybdenum nanoparticles. Moreover, the resistances of MOCNCs were reduced than that of bare AC.

16.
J Nanosci Nanotechnol ; 20(9): 5671-5675, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32331156

ABSTRACT

The catalytic oxidation of benzene and toluene (VOCs) was carried out in order to assess the properties and catalytic activities of spent vanadium-based catalyst and that modified with copper and manganese. The properties of the prepared catalysts were characterized by the Brunauer Emmett Teller (BET) surface area method as well as X-ray diffraction (XRD), Attenuated total reflection-Fourier transform infrared (ATR-FTIR), and Scanning electron microscopy-Energy dispersive X-ray (SEM-EDX) analyses. The experimental results showed that oxalic acid treatment significantly affected the activity of the spent vanadium-based catalyst, ultimately attributing to the removal of catalyst poison such as sulfur and the even redistribution of catalyst components. Moreover, the addition of copper or manganese to the spent vanadium base catalyst treated with oxalic acid (SVO) enhanced its catalytic activity.

17.
J Nanosci Nanotechnol ; 20(9): 5738-5741, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32331170

ABSTRACT

Hydrodeoxygenation (HDO) reactions under low/atmospheric pressure of hydrogen should be studied to solve the problem of the economics of the high-pressure hydrogen upgrading process. Therefore, in this study, the catalytic HDO reaction of m-cresol in atmospheric hydrogen pressure was evaluated using Ni/silica and Nickel silicate (Ni-MCM-41) catalysts. The Ni-MCM-41 catalyst exhibited higher conversion of m-cresol than Ni/silica. The high activity of the Ni-MCM-41 catalyst was due to the large specific surface area and the high nickel loading.

18.
J Nanosci Nanotechnol ; 20(9): 5765-5770, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32331176

ABSTRACT

Sulfonated poly(phenylene) oxide (sPPO) polymer is coated in a dopamine hydrochloride solution to prepare a highly durable, low-price polymer membrane for vanadium redox flow batteries (VRFBs). The polydopamine (PDA) coating on the sPPO membrane is confirmed using SEM and EDX analysis. sPPO coated with PDA exhibits decreased proton conductivity due to high resistance. However, VO+2 reducibility tests shows that the chemical stability is improved due to the introduction of the PDA coating layer on the sPPO membrane, which has a chemical structure with poor durability in VO+2 solution under the operating conditions of a VRFB. These results show that this polymer electrolyte membrane based on PDA-coated sPPO is a candidate for application in the long-term operation of VRFBs.

19.
J Nanosci Nanotechnol ; 20(7): 4322-4326, 2020 07 01.
Article in English | MEDLINE | ID: mdl-31968466

ABSTRACT

In this study, walnut-shaped V2O3 particles with high photocatalytic activity in the visible light were synthesized by hydrothermal process. The V2O3 samples synthesized with the various temperature conditions of the hydrothermal process were characterized using XRD, SEM, TEM, UV-Visible spectrometer and N2gas adsorption/desorption analysis. For investigating the photocatalytic performance of synthesized V2O3 particles in the visible light condition, photodegradation experiments of methylene blue (MB) solution under artificial sunlight irradiation was conducted. As a result, the V2O3 hydrothermal-synthesized at 280 °C was composed of pure V2O3 crystal structure and showed high photocatalytic activity for the degradation of MB dye in visible light.

20.
J Nanosci Nanotechnol ; 19(4): 2329-2333, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30486993

ABSTRACT

In this work, we prepared basalt based nanostructured zeolite 13X by alkali fusion and hydrothermal synthesis process. The sample prepared was characterized using XRD, SEM, and low-temperature nitrogen analysis. The adsorption equilibrium and kinetic characteristics of ammonia nitrogen (NH+4-N) and phosphate phosphorus (PO3-4-P) were investigated. It was found that the basalt based nanostructured zeolite 13X showed high adsorption capacities for NH+4-N (75 mg/g) and PO3-4-P (25 mg/g) under the experimental conditions used. Our results demonstrate that basalt based zeolite 13X can be a good alternative adsorbent for the simultaneously removal of NH+4-N and PO3-4-P from aqueous solution.

SELECTION OF CITATIONS
SEARCH DETAIL
...