Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Antioxidants (Basel) ; 12(5)2023 May 07.
Article in English | MEDLINE | ID: mdl-37237925

ABSTRACT

Cardiac tissue damage following ischemia leads to cardiomyocyte apoptosis and myocardial fibrosis. Epigallocatechin-3-gallate (EGCG), an active polyphenol flavonoid or catechin, exerts bioactivity in tissues with various diseases and protects ischemic myocardium; however, its association with the endothelial-to-mesenchymal transition (EndMT) is unknown. Human umbilical vein endothelial cells (HUVECs) pretreated with transforming growth factor ß2 (TGF-ß2) and interleukin 1ß (IL-1ß) were treated with EGCG to verify cellular function. In addition, EGCG is involved in RhoA GTPase transmission, resulting in reduced cell mobility, oxidative stress, and inflammation-related factors. A mouse myocardial infarction (MI) model was used to confirm the association between EGCG and EndMT in vivo. In the EGCG-treated group, ischemic tissue was regenerated by regulating proteins involved in the EndMT process, and cardioprotection was induced by positively regulating apoptosis and fibrosis of cardiomyocytes. Furthermore, EGCG can reactivate myocardial function due to EndMT inhibition. In summary, our findings confirm that EGCG is an impact activator controlling the cardiac EndMT process derived from ischemic conditions and suggest that supplementation with EGCG may be beneficial in the prevention of cardiovascular disease.

2.
Nat Commun ; 14(1): 1386, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36932091

ABSTRACT

InGaN-based micro-light-emitting diodes have a strong potential as a crucial building block for next-generation displays. However, small-size pixels suffer from efficiency degradations, which increase the power consumption of the display. We demonstrate strategies for epitaxial structure engineering carefully considering the quantum barrier layer and electron blocking layer to alleviate efficiency degradations in low current injection regime by reducing the lateral diffusion of injected carriers via reducing the tunneling rate of electrons through the barrier layer and balanced carrier injection. As a result, the fabricated micro-light-emitting diodes show a high external quantum efficiency of 3.00% at 0.1 A/cm2 for the pixel size of 10 × 10 µm2 and a negligible Jmax EQE shift during size reduction, which is challenging due to the non-radiative recombination at the sidewall. Furthermore, we verify that our epitaxy strategies can result in the relaxation of self-heating of the micro-light-emitting diodes, where the average pixel temperature was effectively reduced.

3.
Ann Occup Environ Med ; 34: e33, 2022.
Article in English | MEDLINE | ID: mdl-36544884

ABSTRACT

Background: Circadian rhythm disturbance caused by shift work has adverse effects on the metabolic homeostasis of the liver. Disruption of the metabolic homeostasis of the liver causes fat accumulation in the liver. The aim of this study was to investigate the correlation between shift work and non-alcoholic fatty liver disease (NAFLD) among male workers in the steel manufacturing industry of Korea. Methods: Based on medical examination data collected in June 2020, 2,511 male subjects from one steel manufacturing company in Korea were selected in total. NAFLD was evaluated using abdominal ultrasound, which was performed by two experienced radiologists. The multinomial logistic regression analysis was performed by adjusting for age, physical activity, smoking history, alcohol consumption, body mass index, waist circumference, blood pressure, blood glucose, lipidemia, liver function test, employment duration, and hepatotoxic materials exposure status. Results: Compared to daytime workers, the odds ratio (OR) of moderate-severe NAFLD in shift workers was 1.449 (95% confidence interval [CI], 1.028-2.043). Compared to daytime workers, the ORs of moderate-severe NAFLD were significantly higher for the group that engaged in total shift work for more than 20 years (OR, 2.285; 95% CI, 1.051-4.970), the group that was not allowed to sleep during night shift work (OR, 1.463; 95% CI, 1.030-2.078), and the group that consumed food during night shift work (OR, 1.580; 95% CI, 1.093-2.284). Conclusions: There was a correlation between shift work and moderate-severe NAFLD in male steel manufacturing workers. There will be a need for more research related to the correlation of shift work with steatohepatitis and cirrhosis in the future.

4.
J Cardiovasc Imaging ; 30(4): 231-262, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36280266

ABSTRACT

There is a wide spectrum of congenital anomalies or variations of the aortic arch, ranging from non-symptomatic variations that are mostly detected incidentally to clinically symptomatic variations that cause severe respiratory distress or esophageal compression. Some of these may be accompanied by other congenital heart diseases or chromosomal anomalies. The widespread use of multidetector computed tomography (CT) in clinical practice has resulted in incidental detection of several variations of the aortic arch in adults. Thus, radiologists and clinicians should be aware of the classification of aortic arch anomalies and carefully look for imaging features associated with a high risk of clinical symptoms. Understanding the embryological development of the aortic arch aids in the classification of various subtypes of aortic arch anomalies and variants. For accurate diagnosis and precise evaluation of aortic arch anomalies, cross-sectional imaging modalities, such as multidetector CT or magnetic resonance imaging, play an important role by providing three-dimensional reconstructed images. In this review, we describe the embryological development of the thoracic aorta and discuss variations and anomalies of the aortic arch along with their clinical implications.

5.
Nanoscale Adv ; 4(19): 4114-4121, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36285215

ABSTRACT

HfO2-based ferroelectric (FE) materials have emerged as a promising material for non-volatile memory applications because of remanent polarization, scalability of thickness below 10 nm, and compatibility with complementary metal-oxide-semiconductor technology. However, in the metal/FE/insulator/semiconductor, it is difficult to improve switching voltage (V sw), endurance, and retention properties due to the interfacial layer (IL), which inevitably grows during the fabrication. Here, we proposed and demonstrated oxygen scavenging to reduce the IL thickness in an HfZrO x -based capacitor and the thinner IL was confirmed by cross-sectional transmission electron microscopy. V sw of a capacitor with scavenging decreased by 18% and the same P r could be obtained at a lower voltage than a capacitor without scavenging. In addition, excellent endurance properties up to 106 cycles were achieved. We believe oxygen scavenging has great potential for future HfZrO x -based memory device applications.

6.
BMB Rep ; 55(8): 380-388, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35880434

ABSTRACT

The B cell translocation gene 1 (BTG1) and BTG2 play a key role in a wide range of cellular activities including proliferation, apoptosis, and cell growth via modulating a variety of central biological steps such as transcription, post-transcriptional, and translation. BTG1 and BTG2 have been identified by genomic profiling of B-cell leukemia and diverse lymphoma types where both genes are commonly mutated, implying that they serve as tumor suppressors. Furthermore, a low expression level of BTG1 or BTG2 in solid tumors is frequently associated with malignant progression and poor treatment outcomes. As physiological aspects, BTG1 and BTG2 have been discovered to play a critical function in regulating quiescence in hematopoietic lineage such as Hematopoietic stem cells (HSCs) and naïve and memory T cells, highlighting their novel role in maintaining the quiescent state. Taken together, emerging evidence from the recent studies suggests that BTG1 and BTG2 play a central anti-proliferative role in various tissues and cells, indicating their potential as targets for innovative therapeutics. [BMB Reports 2022; 55(8): 380-388].


Subject(s)
Immediate-Early Proteins , Neoplasm Proteins , Neoplasms , Tumor Suppressor Proteins , Cell Cycle , Cell Proliferation , Humans , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasms/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
7.
J Clin Med ; 11(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35628957

ABSTRACT

BACKGROUND: We investigated the prevalence of and the factors associated with a high risk of osteoporotic fractures in Korean patients with ankylosing spondylitis (AS). METHODS: This was a multicenter, retrospective study including 219 AS patients from five university hospitals; the control group was selected by matching age and sex with those of the AS patients. The fracture risk was evaluated based on bone mineral density (BMD) measured by dual-energy X-ray absorptiometry and the fracture risk assessment tool (FRAX) with/without BMD. RESULTS: The mean age of the patients was 47.6 years, and 144 (65.8%) patients were men. According to the WHO criteria and FRAX with/without BMD, the candidates for pharmacological treatment were 44 (20.1%), 20 (13.2%), and 23 (15.1%) patients, respectively, significantly more than those in the healthy control group. Among them, the proportion of patients receiving osteoporosis treatment was 39.1-75%. In logistic regression analysis, menopause was an independent factor for the high risk of fracture according to the WHO criteria and FRAX with/without BMD. C-reactive protein level (odds ratio (OR) 3.8 and OR 6) and glucocorticoid use (OR 1.5 and OR 1.7) were associated with a high risk of osteoporotic fracture based on FRAX without BMD and osteoporosis diagnosed according to the WHO criteria. CONCLUSIONS: Our study suggests that both FRAX and WHO criteria may be complementary for treatment decisions to reduce osteoporotic fractures in patients with AS.

8.
Life (Basel) ; 12(2)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35207590

ABSTRACT

Cancer metastasis is directly related to the survival rate of cancer patients. Although cancer metastasis proceeds by the movement of cancer cells, it is fundamentally caused by its resistance to anoikis, a mechanism of apoptosis caused by the loss of adhesion of cancer cells. Therefore, it was found that inhibiting cancer migration and reducing anoikis resistance are important for cancer suppression, and natural compounds can effectively control it. Among them, Ribes fasciculatum, which has been used as a medicinal plant, was confirmed to have anticancer potential, and experiments were conducted to prove various anticancer effects by extracting Ribes fasciculatum (RFE). Through various experiments, it was observed that RFE induces apoptosis of AGS gastric cancer cells, arrests the cell cycle, induces oxidative stress, and reduces mobility. It was also demonstrated that anoikis resistance was attenuated through the downregulation of proteins, such as epidermal growth factor receptor (EGFR). Moreover, the anticancer effect of RFE depends upon the increase in p53 expression, suggesting that RFE is suitable for the development of p53-targeted anticancer materials. Moreover, through xenotransplantation, it was found that the anticancer effect of RFE confirmed in vitro was continued in vivo.

9.
Sci Rep ; 12(1): 1818, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35110701

ABSTRACT

A mnemonic-opto-synaptic transistor (MOST) that has triple functions is demonstrated for an in-sensor vision system. It memorizes a photoresponsivity that corresponds to a synaptic weight as a memory cell, senses light as a photodetector, and performs weight updates as a synapse for machine vision with an artificial neural network (ANN). Herein the memory function added to a previous photodetecting device combined with a photodetector and a synapse provides a technical breakthrough for realizing in-sensor processing that is able to perform image sensing and signal processing in a sensor. A charge trap layer (CTL) was intercalated to gate dielectrics of a vertical pillar-shaped transistor for the memory function. Weight memorized in the CTL makes photoresponsivity tunable for real-time multiplication of the image with a memorized photoresponsivity matrix. Therefore, these multi-faceted features can allow in-sensor processing without external memory for the in-sensor vision system. In particular, the in-sensor vision system can enhance speed and energy efficiency compared to a conventional vision system due to the simultaneous preprocessing of massive data at sensor nodes prior to ANN nodes. Recognition of a simple pattern was demonstrated with full sets of the fabricated MOSTs. Furthermore, recognition of complex hand-written digits in the MNIST database was also demonstrated with software simulations.

10.
Metabolites ; 11(9)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34564426

ABSTRACT

Barley sprouts are known to have several effective physiological activities. In this study, the anti-obesity effect of a barley sprout hot water extract (BSE) was confirmed. Saponarin was quantitatively analyzed in BSE using HPLC, and the inhibitory effect on 3T3-L1 pre-adipocyte differentiation into adipocytes was confirmed by Oil Red O staining, TG assay, and Western blotting. In addition, the inhibitory effect of BSE on adipocyte growth was confirmed through glucose uptake and lipolysis of adipocytes. C57/BL/6N mice were induced to obesity with a high-fat diet, and BSE was administered to confirm the effect on an animal model. Weight gain, morphological changes in adipose tissue, changes in the food efficiency ratio, and blood biochemical changes were observed, and an improvement effect on fatty liver was confirmed. As a result, the anti-obesity effect of BSE was confirmed in vitro, and it was confirmed that this effect was also effective in vivo and that it could be helpful in the treatment of obesity-related diseases.

11.
Taehan Yongsang Uihakhoe Chi ; 82(5): 1033-1052, 2021 Sep.
Article in Korean | MEDLINE | ID: mdl-36238404

ABSTRACT

Bladder cancer is a relatively common cancer type, with a high recurrence rate, that can be often encountered in the imaging study. Accurate diagnosis and staging have a significant impact on determining treatment and evaluating prognosis. Bladder cancer has been evaluated by transurethral resection of bladder tumor for clinical staging and treatment, but it is often understaged when compared with final pathologic result by radical cystectomy. If the location, size, presence of muscle invasion, lymph node metastasis, distant metastasis, and presence of upper urinary tract cancer can be accurately diagnosed and evaluated in an imaging study, it can be treated and managed more appropriately. For an accurate diagnosis, radiologists who evaluate the images must be aware of the characteristics of bladder cancer as well as its types, imaging techniques, and limitations of imaging studies. Recent developments in MRI with functional imaging have improved the quality of bladder imaging and the evaluation of cancer. In addition, the Vesical Imaging Reporting and Data System was published to objectively assess the possibility for muscle invasion of cancer. Radiologists need to know the types of bladder cancer treatment and how to evaluate the changes after treatment. In this article, the characteristics of bladder urothelial carcinoma, various imaging studies, and findings are reviewed.

12.
Phys Chem Chem Phys ; 23(4): 2568-2574, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33078177

ABSTRACT

Atomic layer deposition (ALD) has scarcely been utilized in large-scale manufacturing and industrial processes due to its low productivity, even though it possesses several advantages for improving the device performance. The major cause of its low productivity is the slow growth rate, which is determined by the amount of chemisorbed precursor. The slow growth rate of ALD has become even more critical due to the introduction of heteroleptic-based precursors for achieving a higher thermal stability. In this study, we investigated the theoretical and experimental chemisorption characteristics of the Ti(CpMe5)(OMe)3 precursor during the ALD of TiO2. By density functional theory calculations, the relationship between the steric hindrance effect and the chemistry of a chemisorbed precursor was revealed. Based on the calculation result, a way for improving the growth per cycle by 50% was proposed and demonstrated, successfully.

13.
ACS Appl Mater Interfaces ; 11(40): 36905-36916, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31523951

ABSTRACT

Herein, we report a detailed study on the optoelectronic properties, photovoltaic performance, structural conformation, morphology variation, charge carrier mobility, and recombination dynamics in bulk heterojunction solar cells comprising a series of donor-acceptor conjugated polymers as electron donors based on benzodithiophene (BDT) and 5,8-bis(5-bromothiophen-2-yl)-6,7-difluoro-2,3-bis(3-(octyloxy)phenyl)quinoxaline as a function of the BDT's thienyl substitution (alkyl (WF3), alkylthio (WF3S), and fluoro (WF3F)). The synergistic positive effects of the fluorine substituents on the minimization of the bimolecular recombination losses, the reduction of the series resistances (RS), the increment of the shunt resistances (RSh), the suppression of the trap-assisted recombination losses, the balanced charge transport, the finer nanoscale morphology, and the deeper highest occupied molecular orbital (EHOMO) are manifested versus the alkyl and alkylthio substituents. According to these findings, the WF3F:[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM)-based organic photovoltaic device is a rare example that features a high power conversion efficiency (PCE) of 17.34% under 500 lx indoor light-emitting diode light source with a high open-circuit voltage (VOC) of 0.69 V, due to the suppression of the voltage losses, and a PCE of 9.44% at 1 sun (100 mW/cm2) conditions, simultaneously.

14.
Sci Rep ; 9(1): 12875, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31492924

ABSTRACT

Short-wave infrared (SWIR) detectors and emitters have a high potential value in several fields of applications, including the internet of things (IoT) and advanced driver assistance systems (ADAS), gas sensing. Indium Gallium Arsenide (InGaAs) photodetectors are widely used in the SWIR region of 1-3 µm; however, they only capture a part of the region due to a cut-off wavelength of 1.7 µm. This study presents an InAs p-i-n photodetector grown on a GaAs substrate (001) by inserting 730-nm thick InxAl1-xAs graded and AlAs buffer layers between the InAs layer and the GaAs substrate. At room temperature, the fabricated InAs photodetector operated in an infrared range of approximately 1.5-4 µm and its detectivity (D*) was 1.65 × 108 cm · Hz1/2 · W-1 at 3.3 µm. To demonstrate performance, the Sherlock Holmes mapping images were obtained using the photodetector at room temperature.

15.
ACS Appl Mater Interfaces ; 10(48): 41544-41551, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30418741

ABSTRACT

The atomic layer deposition process of SrTiO3 (STO) films at 230 °C was studied with Sr(iPr3Cp)2 and Ti(CpMe5)(OMe)3 (Pr, Cp, and Me are propyl, cyclopentadienyl, and methyl groups, respectively) on Ru substrates. The growth behavior and properties of STO films grown at 230 °C were compared with those deposited at 370 °C. With the limited over-reaction of the Sr precursor during the initial growth stage at a lower temperature, the cation composition was more controllable, and the surface morphology after crystallization annealing at 650 °C had more uniform grains with fewer defects. Here, the excess reaction of the Sr precursor means the chemical-vapor-deposition-like growth of the SrO component mediated through the thermal decomposition of the adsorbed Sr precursor molecules. It was by the reaction of the Sr precursor with the oxygen supplied from the partly oxidized Ru substrate. The second STO was grown at 370 °C (main layer) on the annealed first STO layer (crystallized seed layer) to lead to the in situ crystallization of the main layer. Due to the improved microstructure of STO films induced by the seed layer deposited at 230 °C, the bulk dielectric constant of 167 was obtained for the main layer, which was higher than the value of 101 where the seed layer was deposited at 370 °C, even though the crystallization annealing condition of the seed layer and the deposition condition of the main layer were consistent. The seed layer grown at 230 °C, however, had a lower dielectric constant of only ∼49, whereas the high-temperature seed layer had a dielectric constant of ∼106. Therefore, the low-temperature seed layer posed a severe limitation in acquiring an advanced capacitor property with the involvement of a low-dielectric interfacial layer.

16.
Korean J Radiol ; 19(5): 888-896, 2018.
Article in English | MEDLINE | ID: mdl-30174478

ABSTRACT

Objective: To evaluate the differences in subjective calcification detection rates and objective calcium volumes in lung nodules according to different reconstruction methods using hybrid kernel (FC13-H) and iterative reconstruction (IR). Materials and Methods: Overall, 35 patients with small (< 4 mm) calcified pulmonary nodules on chest CT were included. Raw data were reconstructed using filtered back projection (FBP) or IR algorithm (AIDR-3D; Canon Medical Systems Corporation), with three types of reconstruction kernel: conventional lung kernel (FC55), FC13-H and conventional soft tissue kernel (FC13). The calcium volumes of pulmonary nodules were quantified using the modified Agatston scoring method. Two radiologists independently interpreted the role of each nodule calcification on the six types of reconstructed images (FC55/FBP, FC55/AIDR-3D, FC13-H/FBP, FC13-H/AIDR-3D, FC13/FBP, and FC13/AIDR-3D). Results: Seventy-eight calcified nodules detected on FC55/FBP images were regarded as reference standards. The calcium detection rates of FC55/AIDR-3D, FC13-H/FBP, FC13-H/AIDR-3D, FC13/FBP, and FC13/AIDR-3D protocols were 80.7%, 15.4%, 6.4%, 52.6%, and 28.2%, respectively, and FC13-H/AIDR-3D showed the smallest calcium detection rate. The calcium volume varied significantly with reconstruction protocols and FC13/AIDR-3D showed the smallest calcium volume (0.04 ± 0.22 mm3), followed by FC13-H/AIDR-3D. Conclusion: Hybrid kernel and IR influence subjective detection and objective measurement of calcium in lung nodules, particularly when both techniques (FC13-H/AIDR-3D) are combined.


Subject(s)
Calcinosis/diagnosis , Multiple Pulmonary Nodules/diagnostic imaging , Tomography, X-Ray Computed , Adult , Aged , Algorithms , Area Under Curve , Artifacts , Calcium/analysis , Female , Humans , Image Interpretation, Computer-Assisted , Male , Middle Aged , ROC Curve , Radiation Dosage , Spatial Analysis , Thorax/diagnostic imaging
17.
ACS Appl Mater Interfaces ; 10(10): 8836-8844, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29468873

ABSTRACT

The atomic layer deposition (ALD) of multication oxide films is complicated because the deposition behaviors of the component oxides are not independent of one another. In this study, the Ti and Sr atom incorporation behaviors during the ALD of SrTiO3 films were quantitatively examined via the carefully designed ALD process sequences. H2O and O3 were adopted as the oxygen sources of the SrO subcycles, whereas only O3 was used for the TiO2 ALD subcycles. Apart from the general conjecture on the roles of the different types of oxygen sources, the oxygen source that was adopted for the subcycles of the other component oxide had almost complete control of the metal atom incorporation behaviors. This means that the first half-cycle of ALD played a dominant role in determining the metal incorporation rate, which revealed the critical role of the steric hindrance effect during the metal precursor injection for the ALD rate. O3 had almost doubled its reactivity toward the Ti and Sr precursors compared with H2O. Although these are the expected results from the common knowledge on ALD, the quantitative analysis of the incorporation behaviors of each metal atom provided insightful viewpoints for the ALD process of this technically important oxide material. Furthermore, the SrTiO3 films with a bulk dielectric constant as high as 236 were obtained by the Ru-SrTiO3-RuO2 capacitor structure.

18.
Sci Rep ; 7(1): 15087, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29118423

ABSTRACT

Tolerogenic dendritic cells (tDCs) represent a promising tool for cellular therapy against autoimmune diseases, allergies, and transplantation rejection. Numerous pharmacological agents are known to induce tDC generation. Minocycline, which has long been used as a broad-spectrum antibiotic, was recently shown to significantly increase the generation of DCs with regulatory properties. Here, we examined the effect of the combination of minocycline with dexamethasone, rapamycin, vitamin D3, and interleukin (IL)-10, which are all known inducers of tDC generation. The highest number of tDCs was generated when minocycline and dexamethasone were used together with granulocyte colony-stimulating factor (GM-SCF) and IL-4. The tolerogenicity of the minocycline/dexamethasone-conditioned tDCs was much better than or at least equal to those of the tDCs generated with either one of these agents, as assessed through in vitro phenotypic and functional assays. In addition, pretreatment with MOG35-55 peptide-pulsed minocycline/dexamethasone-conditioned tDCs significantly ameliorated the clinical signs of experimental autoimmune encephalitis induced by MOG peptide injection in a murine model. These results confirmed that tDCs with potent tolerogenic properties could be efficiently generated by the combined use of minocycline and dexamethasone, along with GM-CSF and IL-4. Our results would help in the development of ex vivo tDC-based immunotherapies.


Subject(s)
Dendritic Cells/drug effects , Dexamethasone/pharmacology , Immune Tolerance/drug effects , Minocycline/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Bone Marrow Cells/drug effects , Cell Differentiation/drug effects , Cells, Cultured , Dendritic Cells/immunology , Female , Granulocyte-Macrophage Colony-Stimulating Factor , Immune Tolerance/immunology , Immunotherapy/methods , Interleukin-4/pharmacology , Mice, Inbred BALB C , Mice, Inbred C57BL
19.
Oper Neurosurg (Hagerstown) ; 13(5): 552-559, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28922885

ABSTRACT

BACKGROUND: Selected patients with acute ischemic stroke might benefit from superficial temporal artery-middle cerebral artery (STA-MCA) bypass, but the indications for urgent STA-MCA bypass are unknown. OBJECTIVE: To report our experiences of urgent STA-MCA bypass in patients requiring urgent reperfusion who were ineligible for other reperfusion therapies, using advanced magnetic resonance imaging (MRI) techniques. METHODS: The inclusion criteria for urgent STA-MCA bypass were as follows: acute infarct volume <70 mL with a ratio of perfusion/diffusion lesion volume ≥1.2, and a regional cerebral blood volume ratio >0.85. From January 2013 to October 2015, 21 urgent STA-MCA bypass surgeries were performed. The control group included 19 patients who did not undergo bypass surgery mainly due to refusal of surgery or the decision of the neurologist. Clinical and radiological data were compared between the surgery and control group. RESULTS: The median age of the control group (70 years, interquartile range [IQR] 58-76) was higher than that of the surgery group (62 years, IQR 49-66), but the median preoperative diffusion and perfusion lesion volumes of the surgery group (13.8 mL, IQR 7.5-26.0 and 120.9 mL, IQR 84.9-176.0, respectively) were higher than those of the control group (5.6 mL, IQR 2.1-9.1 and 69.7 mL, IQR 23.9-125.3, respectively). Sixteen (76.2%) patients in the surgery group and 2 (10.5%) patients in the control group had favorable outcomes ( P < .001). Logistic regression analysis identified bypass surgery as the strongest predictive factor. CONCLUSION: STA-MCA bypass can be used as a therapeutic tool for acute ischemic stroke. Advanced MRI techniques are helpful for selecting patients and for decision making.


Subject(s)
Brain Ischemia/complications , Cerebral Revascularization/methods , Magnetic Resonance Imaging/methods , Stroke , Adult , Aged , Female , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Retrospective Studies , Stroke/diagnostic imaging , Stroke/drug therapy , Stroke/etiology , Stroke/surgery , Tissue Plasminogen Activator/therapeutic use , Treatment Outcome
20.
ACS Appl Mater Interfaces ; 9(21): 18061-18068, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28488438

ABSTRACT

A facile method to fabricate a mechanically robust, stretchable solar absorber for stretchable heat generation and an enhanced thermoelectric generator (TEG) is demonstrated. This strategy is very simple: it uses a multilayer film made of titanium and magnesium fluoride optimized by a two-dimensional finite element frequency-domain simulation, followed by the application of mechanical stresses such as bending and stretching to the film. This process produces many microsized sheets with submicron thickness (∼500 nm), showing great adhesion to any substrates such as fabrics and polydimethylsiloxane. It exhibits a quite high light absorption of approximately 85% over a wavelength range of 0.2-4.0 µm. Under 1 sun illumination, the solar absorber on various stretchable substrates increased the substrate temperature to approximately 60 °C, irrespective of various mechanical stresses such as bending, stretching, rubbing, and even washing. The TEG with the absorber on the top surface also showed an enhanced output power of 60%, compared with that without the absorber. With an incident solar radiation flux of 38.3 kW/m2, the output power significantly increased to 24 mW/cm2 because of the increase in the surface temperature to 141 °C.

SELECTION OF CITATIONS
SEARCH DETAIL
...