Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Phys Lipids ; 242: 105164, 2022 01.
Article in English | MEDLINE | ID: mdl-34906552

ABSTRACT

The selection of an animal model is based on the pathological mechanism appropriate for experimental investigation because the therapeutic effect was low depending on the pathological occurrence mechanism. The purpose of this study is to elucidate the changes in lipid proton concentration in two animal models of nonalcoholic fatty liver disease (NAFLD): methionine and choline-deficient (MCD) diet and high-fat diet (HFD). We calculated the T2 relaxation time of 7 lipid protons (LP) in the 9.4 T MRS phantom experiment. The concentrations of LPs were adjusted for T2 and T2* of MCD, HFD, and CCl4 fatty liver animal models. Multivariate analysis and Pearson correlation were performed to analyze LP concentration, and the difference was investigated via Kendall correlation and independent t-test using LP composition ratio. The T2 relaxation time of each LP was accurately determined using phantom experiments. The in vivo magnetic resonance spectroscopy (MRS) data were obtained by quantifying the t2/t2* corrected LP concentration in the liver of the animal model. In case of MCD and HFD, there was an average difference in all LPs except 0.9 ppm LP, and the MCD and CCl4 groups showed differences in the average of all LPs. However, there was no difference between LP of HFD and CCl4 groups. A higher level of unsaturated fatty acids was found in the MCD fatty liver model than in HFD induced fatty liver.


Subject(s)
Methionine , Non-alcoholic Fatty Liver Disease , Animals , Choline , Diet, High-Fat , Disease Models, Animal , Lipids , Liver/diagnostic imaging , Magnetic Resonance Imaging , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Protons
2.
ACS Appl Mater Interfaces ; 13(4): 5028-5033, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33472366

ABSTRACT

A self-regulating liquid crystal (LC) smart window whose reflectance changes with ambient conditions is demonstrated. Thermally or optically induced switching between the transparent state and a near-infrared (NIR) reflective state can be used for energy-saving windows. Reflection of NIR can reduce the energy used for cooling, while remaining transparent to visible light. By changing the initial alignment of LCs, the window can be switched between hazy-opaque and IR-reflective states to be used for privacy windows.

SELECTION OF CITATIONS
SEARCH DETAIL
...