Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cells ; 12(11)2023 06 05.
Article in English | MEDLINE | ID: mdl-37296674

ABSTRACT

Red blood cell (RBC) transfusion is a lifesaving medical procedure that can treat patients with anemia and hemoglobin disorders. However, the shortage of blood supply and risks of transfusion-transmitted infection and immune incompatibility present a challenge for transfusion. The in vitro generation of RBCs or erythrocytes holds great promise for transfusion medicine and novel cell-based therapies. While hematopoietic stem cells and progenitors derived from peripheral blood, cord blood, and bone marrow can give rise to erythrocytes, the use of human pluripotent stem cells (hPSCs) has also provided an important opportunity to obtain erythrocytes. These hPSCs include both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). As hESCs carry ethical and political controversies, hiPSCs can be a more universal source for RBC generation. In this review, we first discuss the key concepts and mechanisms of erythropoiesis. Thereafter, we summarize different methodologies to differentiate hPSCs into erythrocytes with an emphasis on the key features of human definitive erythroid lineage cells. Finally, we address the current limitations and future directions of clinical applications using hiPSC-derived erythrocytes.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Humans , Cell Differentiation , Erythrocytes , Hematopoietic Stem Cells
2.
Circulation ; 147(24): 1823-1842, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37158107

ABSTRACT

BACKGROUND: Shortly after birth, cardiomyocytes exit the cell cycle and cease proliferation. At present, the regulatory mechanisms for this loss of proliferative capacity are poorly understood. CBX7 (chromobox 7), a polycomb group (PcG) protein, regulates the cell cycle, but its role in cardiomyocyte proliferation is unknown. METHODS: We profiled CBX7 expression in the mouse hearts through quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemistry. We overexpressed CBX7 in neonatal mouse cardiomyocytes through adenoviral transduction. We knocked down CBX7 by using constitutive and inducible conditional knockout mice (Tnnt2-Cre;Cbx7fl/+ and Myh6-MCM;Cbx7fl/fl, respectively). We measured cardiomyocyte proliferation by immunostaining of proliferation markers such as Ki67, phospho-histone 3, and cyclin B1. To examine the role of CBX7 in cardiac regeneration, we used neonatal cardiac apical resection and adult myocardial infarction models. We examined the mechanism of CBX7-mediated repression of cardiomyocyte proliferation through coimmunoprecipitation, mass spectrometry, and other molecular techniques. RESULTS: We explored Cbx7 expression in the heart and found that mRNA expression abruptly increased after birth and was sustained throughout adulthood. Overexpression of CBX7 through adenoviral transduction reduced proliferation of neonatal cardiomyocytes and promoted their multinucleation. On the other hand, genetic inactivation of Cbx7 increased proliferation of cardiomyocytes and impeded cardiac maturation during postnatal heart growth. Genetic ablation of Cbx7 promoted regeneration of neonatal and adult injured hearts. Mechanistically, CBX7 interacted with TARDBP (TAR DNA-binding protein 43) and positively regulated its downstream target, RBM38 (RNA Binding Motif Protein 38), in a TARDBP-dependent manner. Overexpression of RBM38 inhibited the proliferation of CBX7-depleted neonatal cardiomyocytes. CONCLUSIONS: Our results demonstrate that CBX7 directs the cell cycle exit of cardiomyocytes during the postnatal period by regulating its downstream targets TARDBP and RBM38. This is the first study to demonstrate the role of CBX7 in regulation of cardiomyocyte proliferation, and CBX7 could be an important target for cardiac regeneration.


Subject(s)
DNA-Binding Proteins , Myocytes, Cardiac , Animals , Mice , Animals, Newborn , Cell Proliferation , DNA-Binding Proteins/metabolism , Mice, Knockout , Myocytes, Cardiac/metabolism , Polycomb-Group Proteins/metabolism
3.
Nat Biomed Eng ; 5(8): 880-896, 2021 08.
Article in English | MEDLINE | ID: mdl-34426676

ABSTRACT

Fibroblasts can be directly reprogrammed into cardiomyocytes, endothelial cells or smooth muscle cells. Here we report the reprogramming of mouse tail-tip fibroblasts simultaneously into cells resembling these three cell types using the microRNA mimic miR-208b-3p, ascorbic acid and bone morphogenetic protein 4, as well as the formation of tissue-like structures formed by the directly reprogrammed cells. Implantation of the formed cardiovascular tissue into the infarcted hearts of mice led to the migration of reprogrammed cells to the injured tissue, reducing regional cardiac strain and improving cardiac function. The migrated endothelial cells and smooth muscle cells contributed to vessel formation, and the migrated cardiomyocytes, which initially displayed immature characteristics, became mature over time and formed gap junctions with host cardiomyocytes. Direct reprogramming of somatic cells to make cardiac tissue may aid the development of applications in cell therapy, disease modelling and drug discovery for cardiovascular diseases.


Subject(s)
Endothelial Cells/transplantation , Heart/physiology , Myocardial Infarction/therapy , Myocytes, Smooth Muscle/transplantation , Regeneration , Animals , Ascorbic Acid/pharmacology , Bone Morphogenetic Protein 4/pharmacology , Cellular Reprogramming/drug effects , Endothelial Cells/cytology , Endothelial Cells/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Gap Junctions/physiology , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Myocardium/cytology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Neovascularization, Physiologic , Transcriptome
4.
Sci Rep ; 11(1): 3630, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33574435

ABSTRACT

Preeclampsia (PE) is a prevalent pregnancy disorder that leads to high maternal and fetal morbidity and mortality. While defective vascular development and angiogenesis in placenta are known as crucial pathological findings, its pathophysiological mechanism remains elusive. To better understand the effects of PE on angio-vasculogenesis and inflammatory networks in the fetus and to identify their biological signatures, we investigated the quantitative and functional characteristics of cord blood-derived mononuclear cells (CB-MNCs) and CD31-positive MNCs. Flow cytometry analysis demonstrated that the CB-MNCs from the severe PE group had significantly decreased number of cells expressing CD3, CD11b, CD14, CD19, KDR, and CD31 compared with the normal group. Quantitative real time PCR (qRT-PCR) shows down-regulation of the major angiogenic factor VEGFA in MNCs and CD31+ MNCs in severe PE. The major inflammatory cytokines IL1 was highly upregulated in CD31+ CB-MNCs in the severe PE patients. Mild PE patients, however, did not display any significant difference in expression of all measured angiogenic genes and most inflammatory genes. These findings show distinct angiogenic and inflammatory signatures from severe PE, and they may play a significant role in the pathogenesis of vascular defects in placenta of severe PE.


Subject(s)
Fetal Blood/cytology , Inflammation/pathology , Neovascularization, Physiologic , Pre-Eclampsia/pathology , Adult , Female , Fetus/pathology , Gene Expression Regulation , Humans , Inflammation/genetics , Male , Neovascularization, Physiologic/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Pregnancy
5.
Circulation ; 136(20): 1939-1954, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-28972000

ABSTRACT

BACKGROUND: Human pluripotent stem cell (hPSC)-derived endothelial cells (ECs) have limited clinical utility because of undefined components in the differentiation system and poor cell survival in vivo. Here, we aimed to develop a fully defined and clinically compatible system to differentiate hPSCs into ECs. Furthermore, we aimed to enhance cell survival, vessel formation, and therapeutic potential by encapsulating hPSC-ECs with a peptide amphiphile (PA) nanomatrix gel. METHODS: We induced differentiation of hPSCs into the mesodermal lineage by culturing on collagen-coated plates with a glycogen synthase kinase 3ß inhibitor. Next, vascular endothelial growth factor, endothelial growth factor, and basic fibroblast growth factor were added for endothelial lineage differentiation, followed by sorting for CDH5 (VE-cadherin). We constructed an extracellular matrix-mimicking PA nanomatrix gel (PA-RGDS) by incorporating the cell adhesive ligand Arg-Gly-Asp-Ser (RGDS) and a matrix metalloproteinase-2-degradable sequence. We then evaluated whether the encapsulation of hPSC-CDH5+ cells in PA-RGDS could enhance long-term cell survival and vascular regenerative effects in a hind-limb ischemia model with laser Doppler perfusion imaging, bioluminescence imaging, real-time reverse transcription-polymerase chain reaction, and histological analysis. RESULTS: The resultant hPSC-derived CDH5+ cells (hPSC-ECs) showed highly enriched and genuine EC characteristics and proangiogenic activities. When injected into ischemic hind limbs, hPSC-ECs showed better perfusion recovery and higher vessel-forming capacity compared with media-, PA-RGDS-, or human umbilical vein EC-injected groups. However, the group receiving the PA-RGDS-encapsulated hPSC-ECs showed better perfusion recovery, more robust and longer cell survival (> 10 months), and higher and prolonged angiogenic and vascular incorporation capabilities than the bare hPSC-EC-injected group. Surprisingly, the engrafted hPSC-ECs demonstrated previously unknown sustained and dynamic vessel-forming behavior: initial perivascular concentration, a guiding role for new vessel formation, and progressive incorporation into the vessels over 10 months. CONCLUSIONS: We generated highly enriched hPSC-ECs via a clinically compatible system. Furthermore, this study demonstrated that a biocompatible PA-RGDS nanomatrix gel substantially improved long-term survival of hPSC-ECs in an ischemic environment and improved neovascularization effects of hPSC-ECs via prolonged and unique angiogenic and vessel-forming properties. This PA-RGDS-mediated transplantation of hPSC-ECs can serve as a novel platform for cell-based therapy and investigation of long-term behavior of hPSC-ECs.


Subject(s)
Human Umbilical Vein Endothelial Cells/transplantation , Ischemia/therapy , Matrix Metalloproteinase 2/administration & dosage , Nanostructures/administration & dosage , Oligopeptides/administration & dosage , Pluripotent Stem Cells/transplantation , Animals , Cell Differentiation/physiology , Cell- and Tissue-Based Therapy/methods , Cells, Cultured , Endothelial Cells/physiology , Endothelial Cells/transplantation , Hindlimb/blood supply , Human Umbilical Vein Endothelial Cells/physiology , Humans , Ischemia/physiopathology , Male , Mice , Mice, Nude , Pluripotent Stem Cells/physiology , Random Allocation , Treatment Outcome
6.
Circ Res ; 120(5): 848-861, 2017 Mar 03.
Article in English | MEDLINE | ID: mdl-28003219

ABSTRACT

RATIONALE: Direct conversion or reprogramming of human postnatal cells into endothelial cells (ECs), bypassing stem or progenitor cell status, is crucial for regenerative medicine, cell therapy, and pathophysiological investigation but has remained largely unexplored. OBJECTIVE: We sought to directly reprogram human postnatal dermal fibroblasts to ECs with vasculogenic and endothelial transcription factors and determine their vascularizing and therapeutic potential. METHODS AND RESULTS: We utilized various combinations of 7 EC transcription factors to transduce human postnatal dermal fibroblasts and found that ER71/ETV2 (ETS variant 2) alone best induced endothelial features. KDR+ (kinase insert domain receptor) cells sorted at day 7 from ER71/ETV2-transduced human postnatal dermal fibroblasts showed less mature but enriched endothelial characteristics and thus were referred to as early reprogrammed ECs (rECs), and did not undergo maturation by further culture. After a period of several weeks' transgene-free culture followed by transient reinduction of ER71/ETV2, early rECs matured during 3 months of culture and showed reduced ETV2 expression, reaching a mature phenotype similar to postnatal human ECs. These were termed late rECs. While early rECs exhibited an immature phenotype, their implantation into ischemic hindlimbs induced enhanced recovery from ischemia. These 2 rECs showed clear capacity for contributing to new vessel formation through direct vascular incorporation in vivo. Paracrine or proangiogenic effects of implanted early rECs played a significant role in repairing hindlimb ischemia. CONCLUSIONS: This study for the first time demonstrates that ER71/ETV2 alone can directly reprogram human postnatal cells to functional, mature ECs after an intervening transgene-free period. These rECs could be valuable for cell therapy, personalized disease investigation, and exploration of the reprogramming process.


Subject(s)
Cellular Reprogramming Techniques/methods , Endothelial Cells/physiology , Fibroblasts/physiology , Transcription Factors/biosynthesis , Animals , Cell Differentiation/physiology , Cells, Cultured , Hindlimb/blood supply , Hindlimb/physiology , Human Umbilical Vein Endothelial Cells , Humans , Ischemia/metabolism , Male , Mice , Mice, Nude , Neovascularization, Physiologic/physiology , Transcription Factors/genetics
7.
Stem Cell Reports ; 5(6): 1239-1249, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26651608

ABSTRACT

Isolation of ventricular cardiomyocytes (vCMs) has been challenging due to the lack of specific surface markers. Here we show that vCMs can be purified from differentiating mouse embryonic stem cells (mESCs) using molecular beacons (MBs) targeting specific intracellular mRNAs. We designed MBs (IRX4 MBs) to target mRNA encoding Iroquois homeobox protein 4 (Irx4), a transcription factor specific for vCMs. To purify mESC vCMs, IRX4 MBs were delivered into cardiomyogenically differentiating mESCs, and IRX4 MBs-positive cells were FACS-sorted. We found that, of the cells isolated, ~98% displayed vCM-like action potentials by electrophysiological analyses. These MB-purified vCMs continuously maintained their CM characteristics as verified by spontaneous beating, Ca(2+) transient, and expression of vCM-specific proteins. Our study shows the feasibility of isolating pure vCMs via cell sorting without modifying host genes. The homogeneous and functional ventricular CMs generated via the MB-based method can be useful for disease investigation, drug discovery, and cell-based therapies.


Subject(s)
Cell Separation/methods , Embryonic Stem Cells/cytology , Heart Ventricles/cytology , Homeodomain Proteins/genetics , Myocytes, Cardiac/cytology , Action Potentials , Animals , Base Sequence , Cell Differentiation , Cells, Cultured , Flow Cytometry , Mice , Oligonucleotide Probes/genetics , RNA, Messenger/genetics
8.
Biomaterials ; 63: 158-67, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26102992

ABSTRACT

Various stem cells and their progeny have been used therapeutically for vascular regeneration. One of the major hurdles for cell-based therapy is low cell retention in vivo, and to improve cell survival several biomaterials have been used to encapsulate cells before transplantation. Vascular regeneration involves new blood vessel formation which consists of two processes, vasculogenesis and angiogenesis. While embryonic stem cell (ESC)-derived endothelial cells (ESC-ECs) have clearer vasculogenic potency, adult cells exert their effects mainly through paracrine angiogenic activities. While these two cells have seemingly complementary advantages, there have not been any studies to date combining these two cell types for vascular regeneration. We have developed a novel chitosan-based hydrogel construct that encapsulates both CD31-expressing BM-mononuclear cells (BM-CD31(+) cells) and ESC-ECs, and is loaded with VEGF-releasing microtubes. This cell construct showed high cell survival and minimal cytotoxicity in vitro. When implanted into a mouse model of hindlimb ischemia, it induced robust cell retention, neovascularization through vasculogenesis and angiogenesis, and efficiently induced recovery of blood flow in ischemic hindlimbs. This chitosan-based hydrogel encapsulating mixed adult and embryonic cell derivatives and containing VEGF can serve as a novel platform for treating various cardiovascular diseases.


Subject(s)
Chitosan/chemistry , Embryonic Stem Cells/transplantation , Endothelial Cells/transplantation , Hindlimb/blood supply , Ischemia/therapy , Tissue Scaffolds/chemistry , Vascular Endothelial Growth Factor A/administration & dosage , Animals , Cells, Cultured , Embryonic Stem Cells/cytology , Endothelial Cells/cytology , Hindlimb/pathology , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Ischemia/pathology , Male , Mice , Neovascularization, Physiologic , Platelet Endothelial Cell Adhesion Molecule-1/analysis , Vascular Endothelial Growth Factor A/pharmacology
9.
Sci Rep ; 5: 11019, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-26066093

ABSTRACT

Human pluripotent stem cells (hPSCs) have emerged as an important source for cell therapy. However, to date, no studies demonstrated generation of purified hPSC-derived lymphatic endothelial cells (LECs) and tested their therapeutic potential in disease models. Here we sought to differentiate hPSCs into the LEC lineage, purify them with LEC markers, and evaluate their therapeutic effects. We found that an OP9-assisted culture system reinforced by addition of VEGF-A, VEGF-C, and EGF most efficiently generated LECs, which were then isolated via FACS-sorting with LYVE-1 and PODOPLANIN. These hPSC-derived LYVE-1(+)PODOPLANIN(+)cells showed a pure committed LEC phenotype, formed new lymphatic vessels, and expressed lymphangiogenic factors at high levels. These hPSC-derived LECs enhanced wound healing through lymphangiogenesis and lymphvasculogenesis. Here we report, for the first time, that LECs can be selectively isolated from differentiating hPSCs, and that these cells are potent for lymphatic vessel formation in vivo and wound healing. This system and the purified hPSC-derived LECs can serve as a new platform for studying LEC development as well as for cell therapy.


Subject(s)
Cell Differentiation , Cell- and Tissue-Based Therapy , Endothelial Cells/metabolism , Lymphangiogenesis , Wound Healing , Animals , Endothelial Cells/cytology , Endothelial Cells/transplantation , Epidermal Growth Factor/pharmacology , Heterografts , Humans , Mice , Mice, Nude , Pluripotent Stem Cells , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor C/pharmacology
10.
ACS Nano ; 8(10): 10815-25, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25210842

ABSTRACT

A significant barrier to the therapeutic use of stem cells is poor cell retention in vivo. Here, we evaluate the therapeutic potential and long-term engraftment of cardiomyocytes (CMs) derived from mouse embryonic stem cells (mESCs) encapsulated in an injectable nanomatrix gel consisting of peptide amphiphiles incorporating cell adhesive ligand Arg-Gly-Asp-Ser (PA-RGDS) in experimental myocardial infarction (MI). We cultured rat neonatal CMs in PA-RGDS for 7 days and found that more than 90% of the CMs survived. Next, we intramyocardially injected mouse CM cell line HL-1 CMs with or without PA-RGDS into uninjured hearts. Histologic examination and flow cytometry analysis of digested heart tissues showed approximately 3-fold higher engraftment in the mice that received CMs with PA-RGDS compared to those without PA-RGDS. We further investigated the therapeutic effects and long-term engraftment of mESC-CMs with PA-RGDS on MI in comparison with PBS control, CM-only, and PA-RGDS only. Echocardiography demonstrated that the CM-only and CM+PA-RGDS groups showed higher cardiac function at week 2 compared to other groups. However, from 3 weeks, higher cardiac function was maintained only in the CM+PA-RGDS group; this was sustained for 12 weeks. Confocal microscopic examination of the cardiac tissues harvested at 14 weeks demonstrated sustained engraftment and integration of mESC-CMs into host myocardium in the CM+PA-RGDS group only. This study for the first time demonstrated that PA-RGDS encapsulation can enhance survival of mESC-derived CMs and improve cardiac function post-MI. This nanomatrix gel-mediated stem cell therapy can be a promising option for treating MI.


Subject(s)
Cell- and Tissue-Based Therapy , Embryonic Stem Cells/cytology , Heart/physiopathology , Myocytes, Cardiac/cytology , Nanostructures , Animals , Rats
11.
Circulation ; 128(17): 1897-909, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-23995537

ABSTRACT

BACKGROUND: Although methods for generating cardiomyocytes from pluripotent stem cells have been reported, current methods produce heterogeneous mixtures of cardiomyocytes and noncardiomyocyte cells. Here, we report an entirely novel system in which pluripotent stem cell-derived cardiomyocytes are purified by cardiomyocyte-specific molecular beacons (MBs). MBs are nanoscale probes that emit a fluorescence signal when hybridized to target mRNAs. METHOD AND RESULTS: Five MBs targeting mRNAs of either cardiac troponin T or myosin heavy chain 6/7 were generated. Among 5 MBs, an MB that targeted myosin heavy chain 6/7 mRNA (MHC1-MB) identified up to 99% of HL-1 cardiomyocytes, a mouse cardiomyocyte cell line, but <3% of 4 noncardiomyocyte cell types in flow cytometry analysis, which indicates that MHC1-MB is specific for identifying cardiomyocytes. We delivered MHC1-MB into cardiomyogenically differentiated pluripotent stem cells through nucleofection. The detection rate of cardiomyocytes was similar to the percentages of cardiac troponin T- or cardiac troponin I-positive cardiomyocytes, which supports the specificity of MBs. Finally, MHC1-MB-positive cells were sorted by fluorescence-activated cell sorter from mouse and human pluripotent stem cell differentiating cultures, and ≈97% cells expressed cardiac troponin T or cardiac troponin I as determined by flow cytometry. These MB-based sorted cells maintained their cardiomyocyte characteristics, which was verified by spontaneous beating, electrophysiological studies, and expression of cardiac proteins. When transplanted in a myocardial infarction model, MB-based purified cardiomyocytes improved cardiac function and demonstrated significant engraftment for 4 weeks without forming tumors. CONCLUSIONS: We developed a novel cardiomyocyte selection system that allows production of highly purified cardiomyocytes. These purified cardiomyocytes and this system can be valuable for cell therapy and drug discovery.


Subject(s)
Cell Transplantation/methods , Myocardial Infarction/therapy , Myocytes, Cardiac/cytology , Pluripotent Stem Cells/cytology , RNA, Messenger/isolation & purification , Action Potentials/physiology , Animals , Biomarkers , Cell Differentiation/physiology , Cell Line , Cells, Cultured , Flow Cytometry/methods , Humans , Mice , Myocytes, Cardiac/physiology , Myosin Heavy Chains/genetics , Nanotechnology , Nucleic Acid Conformation , Pluripotent Stem Cells/physiology , RNA Probes/chemistry , RNA Probes/isolation & purification , RNA, Messenger/chemistry , Troponin I/genetics , Troponin T/genetics
12.
Int J Cardiol ; 168(1): 41-52, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-23044428

ABSTRACT

BACKGROUND: Human pluripotent stem cells (hPSCs) hold great promise for treating ischemic heart disease. However, current protocols for differentiating hPSCs either result in low yields or require expensive cytokines. METHODS: Here we developed a novel two dimensional (2D) stepwise differentiation system that generates a high yield of cardiomyocytes (CMs) from hPSCs without using special cytokines. Initially, undifferentiated hPSCs were transferred onto Matrigel-coated plates without forming embryoid bodies (EBs) for a few days and were cultured in bFGF-depleted human embryonic stem cells (hESCs) medium. When linear cell aggregation appeared in the margins of the hPSC colonies, the medium was changed to DMEM supplemented with 10% fetal bovine serum (FBS). Thereafter when cell clusters became visible, the medium was changed to DMEM with 20% FBS. RESULTS AND CONCLUSIONS: At about two weeks of culture, contracting clusters began to appear and the number of contracting clusters continuously increased, reaching approximately 70% of all clusters. These clusters were dissociated by two-step enzyme treatment to monolayered CMs, of which ~90% showed CM phenotypes confirmed by an α-myosin heavy chain reporter system. Electrophysiologic studies demonstrated that the hPSC-derived CMs showed three major CM action potential types with 61 to 78% having a ventricular-CM phenotype. This differentiation system showed a clear spatiotemporal role of the surrounding endodermal cells for differentiation of mesodermal cell clusters into CMs. In conclusion, this system provides a novel platform to generate CMs from hPSCs at high yield without using cytokines and to study the development of hPSCs into CMs.


Subject(s)
Cell Differentiation/physiology , Induced Pluripotent Stem Cells/physiology , Induced Pluripotent Stem Cells/transplantation , Myocytes, Cardiac/physiology , Myocytes, Cardiac/transplantation , Primary Cell Culture/methods , Animals , Humans , Male , Myocardial Infarction/pathology , Myocardial Infarction/surgery , Pluripotent Stem Cells/physiology , Pluripotent Stem Cells/transplantation , Primary Cell Culture/trends , Rats, Nude
13.
PLoS Genet ; 7(6): e1002154, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21731508

ABSTRACT

Covalent modification of DNA distinguishes cellular identities and is crucial for regulating the pluripotency and differentiation of embryonic stem (ES) cells. The recent demonstration that 5-methylcytosine (5-mC) may be further modified to 5-hydroxymethylcytosine (5-hmC) in ES cells has revealed a novel regulatory paradigm to modulate the epigenetic landscape of pluripotency. To understand the role of 5-hmC in the epigenomic landscape of pluripotent cells, here we profile the genome-wide 5-hmC distribution and correlate it with the genomic profiles of 11 diverse histone modifications and six transcription factors in human ES cells. By integrating genomic 5-hmC signals with maps of histone enrichment, we link particular pluripotency-associated chromatin contexts with 5-hmC. Intriguingly, through additional correlations with defined chromatin signatures at promoter and enhancer subtypes, we show distinct enrichment of 5-hmC at enhancers marked with H3K4me1 and H3K27ac. These results suggest potential role(s) for 5-hmC in the regulation of specific promoters and enhancers. In addition, our results provide a detailed epigenomic map of 5-hmC from which to pursue future functional studies on the diverse regulatory roles associated with 5-hmC.


Subject(s)
Cytosine/analogs & derivatives , Embryonic Stem Cells/cytology , Epigenomics , Genome, Human , 5-Methylcytosine/metabolism , Binding Sites , Cell Line , Chromosome Mapping , Cytosine/metabolism , DNA Methylation , Embryonic Stem Cells/metabolism , Gene Expression Regulation , Gene Library , Heterochromatin/chemistry , Histones/metabolism , Humans , Immunoblotting , Metaphase , Promoter Regions, Genetic , Sequence Alignment , Transcription Factors/metabolism
14.
Eur J Neurosci ; 23(10): 2543-50, 2006 May.
Article in English | MEDLINE | ID: mdl-16817857

ABSTRACT

Mechanosensitive (MS) channels are ion channels gated by different types of mechanical stimuli. MS channels in sensory neurons are thought to be molecular transducers for somatic sensations such as touch, pressure, proprioception and pain. Previously, we reported that two types of MS channels are present in sensory neurons. These channels are termed low threshold (LT) and high threshold (HT) MS channels based on their pressure threshold for activation. Here, we report another type of MS channel present in sensory neurons. The channel is activated by low pressure applied to a patch (threshold approximately 20 mmHg, similar to that in the LT channel). However, because this channel has a smaller single-channel conductance than that of the LT channel, the newly classified MS channel is now called a low threshold small conductance (LTSC) channel. Unlike the LT channel, which has outwardly rectifying currents, the current-voltage relationship of the LTSC is linear. The LTSC was permeable to monovalent cations and Ca2+, and reversibly blocked by gadolinium, a blocker of MS channels. Unlike the LT channel, the LTSC was sensitized by prostaglandin E2, an inflammatory mediator that is known to sensitize nociceptors to mechanical stimuli. LTSC channels were found mostly in small cultured sensory neurons. Thus, these results suggest that the LTSC is a distinct type of MS channel that is different from the LT and HT channels in sensory neurons, and that LTSCs might play a role in mediating somatosensations, including pain.


Subject(s)
Ion Channels/metabolism , Mechanoreceptors/metabolism , Mechanotransduction, Cellular/physiology , Neurons, Afferent/metabolism , Amiloride/pharmacology , Animals , Cell Size , Dinoprostone/pharmacology , Gadolinium/pharmacology , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Ion Channel Gating/drug effects , Ion Channel Gating/physiology , Ion Channels/drug effects , Mechanoreceptors/drug effects , Mechanotransduction, Cellular/drug effects , Membrane Potentials/drug effects , Membrane Potentials/physiology , Neurons, Afferent/drug effects , Patch-Clamp Techniques , Rats , Sodium Channel Blockers/pharmacology
15.
J Neurosci ; 26(9): 2403-12, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-16510717

ABSTRACT

TRPV1, a cloned capsaicin receptor, is a molecular sensor for detecting adverse stimuli and a key element for inflammatory nociception and represents biophysical properties of native channel. However, there seems to be a marked difference between TRPV1 and native capsaicin receptors in the pharmacological response profiles to vanilloids or acid. One plausible explanation for this overt discrepancy is the presence of regulatory proteins associated with TRPV1. Here, we identify Fas-associated factor 1 (FAF1) as a regulatory factor, which is coexpressed with and binds to TRPV1 in sensory neurons. When expressed heterologously, FAF1 reduces the responses of TRPV1 to capsaicin, acid, and heat, to the pharmacological level of native capsaicin receptor in sensory neurons. Furthermore, silencing FAF1 by RNA interference augments capsaicin-sensitive current in native sensory neurons. We therefore conclude that FAF1 forms an integral component of the vanilloid receptor complex and that it constitutively modulates the sensitivity of TRPV1 to various noxious stimuli in sensory neurons.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Neurons, Afferent/physiology , TRPV Cation Channels/physiology , Acids/pharmacology , Analysis of Variance , Animals , Animals, Newborn , Apoptosis Regulatory Proteins , Biotinylation/methods , Blotting, Western/methods , Blotting, Western/statistics & numerical data , Capsaicin/pharmacology , Cells, Cultured , Cloning, Molecular/methods , Dose-Response Relationship, Drug , Electric Stimulation/methods , Ganglia, Spinal/cytology , Gene Expression Regulation/drug effects , Humans , Immunohistochemistry/methods , Immunoprecipitation/methods , Membrane Potentials/drug effects , Membrane Potentials/radiation effects , Mutation , Neurons, Afferent/drug effects , Patch-Clamp Techniques/methods , Protein Structure, Tertiary/physiology , RNA, Small Interfering/pharmacology , Radioligand Assay/methods , Rats , Reverse Transcriptase Polymerase Chain Reaction/methods , Temperature , Transfection/methods , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...