Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(24): eabo4610, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35704586

ABSTRACT

Recently, stationary wireless power transfer (WPT) has been widely adopted in commercial devices. However, the current WPT configuration is limited in its operational area and susceptible to operating condition changes, impeding its applications for dynamic environments. To overcome the limitations, we propose a WPT system with laterally aligned neutral elements in parity-time (PT) symmetry, which can widen the operational area with the number of neutrals N. Compared to the conventional multiple-input-single-output WPT, the dimension of system complexity is substantially reduced from R × CN to RN+1 because the neutral amplitudes are simply controlled by coupling capacitors. The operational frequency is automatically adjusted to a real eigenvalue of the PT-symmetric system to achieve high voltage gain and efficiency, making the system robust. The performance of the system calculated by the coupled-mode theory was experimentally verified with rigid and flexible types of receivers, confirming its potential in both industrial and biomedical electronics.

2.
Sensors (Basel) ; 21(24)2021 Dec 18.
Article in English | MEDLINE | ID: mdl-34960558

ABSTRACT

We propose a biomedical sensor system for continuous monitoring of glucose concentration. Despite recent advances in implantable biomedical devices, mm sized devices have yet to be developed due to the power limitation of the device in a tissue. We here present a mm sized wireless system with backscattered frequency-modulation communication that enables a low-power operation to read the glucose level from a fluorescent hydrogel sensor. The configuration of the reader structure is optimized for an efficient wireless power transfer and data communication, miniaturizing the entire implantable device to 3 × 6 mm 2 size. The operation distance between the reader and the implantable device reaches 2 mm with a transmission power of 33 dBm. We demonstrate that the frequency of backscattered signals changes according to the light intensity of the fluorescent glucose sensor. We envision that the present wireless interface can be applied to other fluorescence-based biosensors to make them highly comfortable, biocompatible, and stable within a body.


Subject(s)
Hydrogels , Wireless Technology , Glucose , Insulin Infusion Systems , Prostheses and Implants
3.
Adv Healthc Mater ; 10(17): e2100614, 2021 09.
Article in English | MEDLINE | ID: mdl-34075721

ABSTRACT

Implantable bioelectronic devices are becoming useful and prospective solutions for various diseases owing to their ability to monitor or manipulate body functions. However, conventional implantable devices (e.g., pacemaker and neurostimulator) are still bulky and rigid, which is mostly due to the energy storage component. In addition to mechanical mismatch between the bulky and rigid implantable device and the soft human tissue, another significant drawback is that the entire device should be surgically replaced once the initially stored energy is exhausted. Besides, retrieving physiological information across a closed epidermis is a tricky procedure. However, wireless interfaces for power and data transfer utilizing radio frequency (RF) microwave offer a promising solution for resolving such issues. While the RF interfacing devices for power and data transfer are extensively investigated and developed using conventional electronics, their application to implantable bioelectronics is still a challenge owing to the constraints and requirements of in vivo environments, such as mechanical softness, small module size, tissue attenuation, and biocompatibility. This work elucidates the recent advances in RF-based power transfer and telemetry for implantable bioelectronics to tackle such challenges.


Subject(s)
Prostheses and Implants , Telemetry , Electronics , Humans , Prospective Studies , Radio Waves , Wireless Technology
4.
Sci Adv ; 7(1)2021 01.
Article in English | MEDLINE | ID: mdl-33523849

ABSTRACT

Personalized biomedical devices have enormous potential to solve clinical challenges in urgent medical situations. Despite this potential, a device for in situ treatment of fatal seizures using pharmaceutical methods has not been developed yet. Here, we present a novel treatment system for neurological medical emergencies, such as status epilepticus, a fatal epileptic condition that requires immediate treatment, using a soft implantable drug delivery device (SID). The SID is integrated wirelessly with wearable devices for monitoring electroencephalography signals and triggering subcutaneous drug release through wireless voltage induction. Because of the wireless integration, bulky rigid components such as sensors, batteries, and electronic circuits can be moved from the SID to wearables, and thus, the mechanical softness and miniaturization of the SID are achieved. The efficacy of the prompt treatment could be demonstrated with animal experiments in vivo, in which brain damages were reduced and survival rates were increased.


Subject(s)
Wearable Electronic Devices , Animals , Pharmaceutical Preparations , Prostheses and Implants , Seizures/therapy
5.
Nanomaterials (Basel) ; 10(9)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825304

ABSTRACT

Resistive random access memories (RRAMs) are a type of resistive memory with two metal electrodes and a semi-insulating switching material in-between. As the persistent technology node downscaling continues in transistor technologies, RRAM designers also face similar device scaling challenges in simple cross-point arrays. For this reason, a cost-effective 3D vertical RRAM (VRRAM) structure which requires a single pivotal lithography step is attracting significant attention from both the scientific community and the industry. Integrating an extremely thin plane electrode to such a structure is a difficult but necessary step to enable high memory density. In addition, experimentally verifying and modeling such devices is an important step to designing RRAM arrays with a high noise margin, low resistive-capacitive (RC) delays, and stable switching characteristics. In this work, we conducted an electromagnetic analysis on a 3D vertical RRAM with atomically thin graphene electrodes and compared it with the conventional metal electrode. Based on the experimental device measurement results, we derived a theoretical basis and models for each VRRAM design that can be further utilized in the estimation of graphene-based 3D memory at the circuit and architecture levels. We concluded that a 71% increase in electromagnetic field strength was observed in a 0.3 nm thick graphene electrode when compared to a 5 nm thick metal electrode. Such an increase in the field led to much lower energy consumption and fluctuation range during RRAM switching. Due to unique graphene properties resulting in improved programming behavior, the graphene-based VRRAM can be a strong candidate for stacked storage devices in new memory computing platforms.

6.
Nat Commun ; 10(1): 5205, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31729383

ABSTRACT

Implantation of biodegradable wafers near the brain surgery site to deliver anti-cancer agents which target residual tumor cells by bypassing the blood-brain barrier has been a promising method for brain tumor treatment. However, further improvement in the prognosis is still necessary. We herein present novel materials and device technologies for drug delivery to brain tumors, i.e., a flexible, sticky, and biodegradable drug-loaded patch integrated with wireless electronics for controlled intracranial drug delivery through mild-thermic actuation. The flexible and bifacially-designed sticky/hydrophobic device allows conformal adhesion on the brain surgery site and provides spatially-controlled and temporarily-extended drug delivery to brain tumors while minimizing unintended drug leakage to the cerebrospinal fluid. Biodegradation of the entire device minimizes potential neurological side-effects. Application of the device to the mouse model confirms tumor volume suppression and improved survival rate. Demonstration in a large animal model (canine model) exhibited its potential for human application.


Subject(s)
Antineoplastic Agents/administration & dosage , Brain Neoplasms/drug therapy , Drug Delivery Systems/methods , Absorbable Implants , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Cell Line, Tumor , Dogs , Drug Delivery Systems/instrumentation , Humans , Mice , Wireless Technology
7.
Proc Natl Acad Sci U S A ; 111(22): 7974-9, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24843161

ABSTRACT

The ability to implant electronic systems in the human body has led to many medical advances. Progress in semiconductor technology paved the way for devices at the scale of a millimeter or less ("microimplants"), but the miniaturization of the power source remains challenging. Although wireless powering has been demonstrated, energy transfer beyond superficial depths in tissue has so far been limited by large coils (at least a centimeter in diameter) unsuitable for a microimplant. Here, we show that this limitation can be overcome by a method, termed midfield powering, to create a high-energy density region deep in tissue inside of which the power-harvesting structure can be made extremely small. Unlike conventional near-field (inductively coupled) coils, for which coupling is limited by exponential field decay, a patterned metal plate is used to induce spatially confined and adaptive energy transport through propagating modes in tissue. We use this method to power a microimplant (2 mm, 70 mg) capable of closed-chest wireless control of the heart that is orders of magnitude smaller than conventional pacemakers. With exposure levels below human safety thresholds, milliwatt levels of power can be transferred to a deep-tissue (>5 cm) microimplant for both complex electronic function and physiological stimulation. The approach developed here should enable new generations of implantable systems that can be integrated into the body at minimal cost and risk.


Subject(s)
Electronics, Medical/instrumentation , Electronics, Medical/methods , Miniaturization/methods , Models, Theoretical , Prostheses and Implants , Wireless Technology/instrumentation , Animals , Cerebral Cortex , Electric Power Supplies , Electromagnetic Fields , Equipment Design , Heart Ventricles , Humans , Optics and Photonics/instrumentation , Optics and Photonics/methods , Rabbits , Semiconductors , Skin , Swine
8.
Phys Rev Lett ; 110(20): 203905, 2013 May 17.
Article in English | MEDLINE | ID: mdl-25167413

ABSTRACT

We obtain an analytical bound on the efficiency of wireless power transfer to a weakly coupled device. The optimal source is solved for a multilayer geometry in terms of a representation based on the field equivalence principle. The theory reveals that optimal power transfer exploits the properties of the midfield to achieve efficiencies far greater than conventional coil-based designs. As a physical realization of the source, we present a slot array structure whose performance closely approaches the theoretical bound.


Subject(s)
Electric Power Supplies , Models, Theoretical , Prostheses and Implants , Electromagnetic Radiation , Equipment Design
SELECTION OF CITATIONS
SEARCH DETAIL
...